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Abstract

Background: The automated acquisition of intraoperative patient temperature data via temperature probes leads to the possibility
of producing a number of artifacts related to probe positioning that may impact these probes’ utility for observational research.

Objective: We sought to compare the performance of two de novo algorithms for filtering such artifacts.

Methods: In this observational retrospective study, the intraoperative temperature data of adults who received general anesthesia
for noncardiac surgery were extracted from the Multicenter Perioperative Outcomes Group registry. Two algorithms were
developed and then compared to the reference standard—anesthesiologists’ manual artifact detection process. Algorithm 1 (a
slope-based algorithm) was based on the linear curve fit of 3 adjacent temperature data points. Algorithm 2 (an interval-based
algorithm) assessed for time gaps between contiguous temperature recordings. Sensitivity and specificity values for artifact
detection were calculated for each algorithm, as were mean temperatures and areas under the curve for hypothermia (temperatures
below 36 °C) for each patient, after artifact removal via each methodology.

Results: A total of 27,683 temperature readings from 200 anesthetic records were analyzed. The overall agreement among the
anesthesiologists was 92.1%. Both algorithms had high specificity but moderate sensitivity (specificity: 99.02% for algorithm 1
vs 99.54% for algorithm 2; sensitivity: 49.13% for algorithm 1 vs 37.72% for algorithm 2; F-score: 0.65 for algorithm 1 vs 0.55
for algorithm 2). The areas under the curve for time × hypothermic temperature and the mean temperatures recorded for each
case after artifact removal were similar between the algorithms and the anesthesiologists.

Conclusions: The tested algorithms provide an automated way to filter intraoperative temperature artifacts that closely
approximates manual sorting by anesthesiologists. Our study provides evidence demonstrating the efficacy of highly generalizable
artifact reduction algorithms that can be readily used by observational studies that rely on automated intraoperative data acquisition.

(JMIR Perioper Med 2022;5(1):e37174) doi: 10.2196/37174
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Introduction

Body temperature is a critical vital sign, and its measurement
during surgery is an integral part of standard American Society
of Anesthesiologists monitoring [1,2]. Intraoperative
hypothermia has been associated with perioperative
complications, such as surgical wound infections, cardiac
morbidity, coagulopathy, impaired drug metabolism, and
prolonged recovery [3-7]. Given its profound impact on
postoperative outcomes, accurately accounting for intraoperative
temperature in large perioperative database studies is of
paramount importance. Unfortunately, intraoperative
temperature readings usually contain a number of artifacts.
Mechanistically, these artifacts may be a result of temperature
probes that are suboptimally placed, temperature probes that
accidentally fall out of a patient’s oral cavity or nasal orifice,
low readings resulting from the probe warming up from room
temperature to a patient’s core temperature, or readings
associated with the repositioning of temperature probes [8,9].
Although some studies have proposed temperature
artifact–reducing algorithms, their validation remains lacking,
and the most widely cited algorithm relies on equal time
intervals across measurements—a condition that is frequently
violated within many large data sets [10]. Our study aims to
address these knowledge and performance gaps, as we compare
the performance of two novel temperature artifact reduction
algorithms to that of manual artifact removal by three
board-certified anesthesiologists, using a large intraoperative
temperature database.

Methods

Ethics Approval
This study was approved by the institutional review board
(approval number: HIC 1206010438).

Study Design
This was a multicenter, observational, retrospective study of
data that were collected by the Multicenter Perioperative
Outcomes Group (MPOG) consortium after institutional review
board approval. The MPOG registry contains the anesthetic
data of over 14 million procedures from over 48 medical centers.
This consortium has rigorously collected and standardized
information regarding anesthetic and surgical encounters with
patient-level data [11]. The number of individual surgical
procedures, the diversity of participants, and its wide geographic
coverage make this database a very rich data source for drawing
precise and reliable estimates. Both large academic medical
centers and community hospitals contribute to this database,
thereby yielding a large, representative, national sample. This
database is among the largest anesthetic registries in the United

States, and algorithm evaluation via the use of this registry
would make algorithms generalizable across a wide array of
institutions.

The study plan, including the sample size assessment, was
published prior to data extraction and analysis [12].

Inclusion and Exclusion Criteria
Anesthetic records of patients aged over 18 years who were
undergoing general anesthesia with an endotracheal tube for
noncardiac surgery were included in this study. The exclusion
criteria comprised cases with an American Society of
Anesthesiologists Physical Status of 5 or 6, temperature probes
placed at sites other than the nasopharynx or the oropharynx,
cases in which an endotracheal tube was not used for general
anesthesia, or cases with less than 3 temperature readings in the
anesthetic records. These temperature recordings were extracted
from anesthesia charts. Only intraoperative readings were used
for artifact detection.

After the cohort was selected by using the inclusion and
exclusion criteria, a convenience sample of 200 noncardiac
surgical cases from an anonymized institution within the MPOG
consortium was chosen.

End Points
The primary study end point was to assess the sensitivity and
specificity of the two algorithms for detecting artifacts in
automated intraoperative temperature recordings by comparing
them to a reference standard—manual artifact detection by three
anesthesiologists. The other study end points included measures
of agreement (by case) between each algorithm and between
the algorithms and the experts’ adjudications for mean
temperatures and areas under the curve (AUCs). AUCs for
temperature readings below 36 °C were used for this analysis.
The AUC for the time multiplied by temperature readings below
36 °C was calculated for each patient after excluding artifacts,
as adjudicated by the algorithms or the experts. The use of AUCs
for temperature readings under 36 °C served as an index that
combined the duration and severity of patient hypothermia [13].

Algorithm Definitions
Algorithms 1 and 2 are depicted in Figure 1. Briefly,
temperatures below 32 °C and above 40 °C were excluded. The
algorithms’ logics were then used to identify potential artifacts
in accordance with their flowcharts. Algorithm 1—the
slope-based algorithm—calculated the linear curve fit of 3
adjacent temperature data points. Data points that had a slope
of greater than 0.08 were excluded. The algorithm then
calculated the absolute temperature difference between the
previous data point and the next data point. Temperatures with
an absolute change of greater than 0.25 °C from the previous
temperature were excluded.
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Figure 1. The algorithms used for the reduction of artifacts in intraoperative temperature recordings.

Algorithm 2—the interval-based algorithm—assessed for time
gaps between contiguous temperature recordings that were more
than 5 minutes apart. If there were less than 5 temperature
recordings after the time gap, they were recorded as artifacts.
If, however, there were more than 5 recordings after the
measurement gap, then the slope between the last valid
temperature recording and the next temperature recording was
calculated, and if the slope was less than 0.35 °C per minute,
then the temperature points were retained. Otherwise, they were
marked as artifacts.

Adjudication by Experts
Three board-certified anesthesiologists independently identified
artifacts in temperature readings of intraoperative cases; each
anesthesiologist was blinded to the other anesthesiologists’
results and the algorithms’ calculations. In the event of
discordance, the majority rule (ie, agreement among at least 2
of the 3 anesthesiologists) was followed. We used an innovative
approach to present time-temperature readings to the experts,
for which we developed software on the JavaFX (Oracle
Corporation) and Java 11 JDK (Oracle Corporation) platforms.
The program first extracted patient temperature data to a flat
file. Each record incorporated a unique patient identifier,
temperature, and time stamp. The data were then written to an
HTML file, using a FreeMarker Java template. The file used
the JavaScript Google Visualization application programming
interface to display intraoperative temperatures for each case
in a scatterplot, which displayed temperatures on the vertical
axis and time on the horizontal axis (Multimedia Appendix 1).
Experts marked readings that they considered to be artifacts.
The results were recorded and abstracted to a datasheet.

Statistical Analysis
Statistical analyses were performed by using SAS version 9.4
(SAS Institute Inc). Descriptive statistics were performed on

all extracted temperature readings, including readings deemed
artifactual by each algorithm and the expert-adjudicated values.

The results of the manual artifact identification by the experts
(majority rule) and the two algorithms were also compared by
using Bland-Altman plots for both mean temperatures and AUCs
for hypothermic temperature readings. For these AUCs, we
computed the average height between successive time points
and corresponding interval widths to estimate the segment areas.
We aggregated the areas for temperatures under 36 °C to obtain
the total area for each surgical case.

Sample Size Justification
Although we conducted an observational descriptive analysis
without inferential aims, we performed a power analysis to
establish the extent to which the data set would define bias and
limits of agreement. After a literature review, we were not able
to find similar studies that could be used to guide the sample
size estimation. Based on our pilot data, the mean sample
difference in AUCs for temperature readings below 36 °C
between the experts and each algorithm was 0.2 (SD 1.02)
minutes×°C. Using the methodology developed by Lu et al [14],
we determined that we would require a sample size of 147
patient records to achieve 80% power to detect agreement when
the confidence level of the level of agreement was set to 0.950
and the confidence level of the CIs for the levels of agreement
was set to 0.95. The maximum allowable difference was 2.56
minutes×°C, which was much lower than our prespecified,
clinically meaningful value of 4 minutes×°C. To account for
the possibility of including cases without any temperature
recordings and to be well beyond the 80% power threshold, an
a priori decision was made to include 200 intraoperative cases,
which were analyzed for this study.
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Results

Study Characteristics
A total of 27,683 temperature readings from 200 anesthetic
records were analyzed by the algorithms and the
anesthesiologists. The median temperature reading count per
case was 103 (IQR 51-185.5). A histogram depicting the
temperature curve is presented in Multimedia Appendix 2. There
was unanimous agreement among the anesthesiologists for
92.1% (25,496/27,683) of the temperature readings; they
identified 89 records as artifacts. An additional 200 readings
were noted as artifacts by using the majority rule, resulting in
a total of 289 temperature readings that were considered to be
artifacts.

Sensitivity and Specificity for Artifact Detection
Among the 27,683 temperature readings, a total of 411
temperature points were identified as artifacts by the slope-based
algorithm, and 236 points were identified as artifacts by the
interval-based algorithm. Notably, these rejections were not
limited to a few cases. Of the 200 cases, 81 (40.5%) had at least
one rejection by the slope-based algorithm, and 89 cases (44.5%)
had at least one rejection by the interval-based algorithm. In
comparison, 88 cases (44%) were adjudicated to have artifacts
by the anesthesiologists. The mean number of rejections for
each of the 200 cases was 2.1 for the slope-based algorithm and
1.2 for the interval-based algorithm.

As expected, both algorithms had a high specificity for artifact
detection (slope-based algorithm: 99.02%; interval-based
algorithm: 99.54%), while the slope-based algorithm appeared
to be better than the interval-based algorithm in terms of
sensitivity (49.13% vs 37.72%). The F-score was 0.65 for the
slope-based algorithm and 0.55 for the interval-based algorithm.

AUC Estimates for Hypothermic Temperature
Readings
Comparisons between the AUCs for hypothermic temperature
readings from raw data and those from anesthesiologists showed
no appreciable differences in the patient-averaged summaries

(Figure 2). However, some differences were seen in extremely
low temperatures readings, such as the positive bias toward the
raw data in the analyzed curves. This bias was seen because
such low temperature readings were frequently adjudicated to
be artifactual by experts and discarded in their AUC
calculations, but they were used for AUC calculations with the
raw data. Similar results were obtained after comparing each
algorithm to the raw data (Figure 2 and Multimedia Appendix
3).

Previously, an AUC of 60 minutes×°C was used as a standard
unit of reference; multiples of 60 minutes×°C were shown to
be associated with adverse patient outcomes [10]. Our
Bland-Altman plots indicated a bias value of greater than
60 minutes×°C between experts and raw values
(−86.26 minutes×°C), between algorithm 1 and raw values
(−106.04 minutes×°C), and between algorithm 2 and raw values
(−70.73 minutes×°C). This indicates that the application of these
algorithms may make hypothermia-based temperature analyses
more meaningful than analyses based on raw data alone when
assessing the impact of hypothermia on patient outcomes.

Interestingly, both the bias between experts and the slope-based
algorithm (19.78 minutes×°C) and the bias between experts and
the interval-based algorithm (−15.53 minutes×°C) were less
than 60 minutes×°C, suggesting that after the raw data were
evaluated by experts or by either of the algorithms, the resulting
measures of hypothermia were similar and were within accepted
measures of clinical relevance.

In order to better characterize the agreement, we assessed the
performance of the algorithms in evaluating a clinically
meaningful measure. Large AUCs for hypothermic temperature
readings (time under 36 °C × temperature value of under 36 °C)
have been shown to be associated with poor postoperative
outcomes, including increased lengths of hospital stay and the
need for a blood transfusion [10]. We used a similar approach
to compare such AUCs for each case after artifact removal by
experts and artifact removal by the slope-based algorithm
(algorithm 1) and the interval-based algorithm (algorithm 2;
Figure 3 and Figure 4). These methodologies have been used
in similar studies comparing 2 modalities of measurement [15].
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Figure 2. Bland-Altman plots for the interrater agreement analysis of areas under the curve for hypothermia; 95% limits of agreement are shown with
light blue lines, bias is shown as a dotted black line, and the agreement bias of 2 methods is shown as a solid red line. Each dot represents a surgical
case.
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Figure 3. Scatter plots showing the distribution of AUCs for hypothermia (time under 36 °C × hypothermic temperature value) for the cases after
artifact removal by the algorithms versus the anesthesiologists (experts). Each dot indicates a case. Values on the red line indicate cases that have
temperature readings with similar AUCs after artifact removal by experts and by algorithm 1 (left) and algorithm 2 (right). Values to the right of the
red line indicate fewer hypothermic temperatures marked as artifacts by the algorithm (compared to those marked by experts), leading to larger AUCs
calculated by the experts compared to those calculated by the algorithms. AUC: area under the curve.

Figure 4. Scatter plots showing the distribution of AUCs for hypothermia (time under 36 °C × hypothermic temperature value) for the cases after
artifact removal by the algorithms versus the raw values. Each dot indicates a case. Values on the red line indicate cases that have temperature readings
with similar AUCs before (raw values) and after artifact removal by algorithm 1 (left) and algorithm 2 (right). Values to the right of the red line indicate
the number of hypothermic temperatures marked as artifacts by the algorithm (as compared to the raw values), leading to larger AUCs calculated from
the raw data compared to those calculated by the algorithms. AUC: area under the curve.

Mean Temperature Estimates
Mean temperature readings for each patient record were
calculated after artifact removal via the methods we described.
The mean temperature reading profiles, in which the raw data
were compared to anesthesiologists’majority rule–based results,

showed no appreciable differences (Figure 5). However, as with
the AUCs, bias in mean temperature was seen at extremely low
temperatures. The mean temperature readings for each of the
two algorithms before and after artifact removal followed a
similar trend (Figure 5 and Multimedia Appendix 4).
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Figure 5. Bland-Altman plots for the interrater agreement analysis of mean temperatures; 95% limits of agreement are shown with light blue lines,
bias is shown as a dotted black line, and the agreement bias of 2 methods is shown as a solid red line. Each dot represents a surgical case.

Clustering of the Artifacts
In order to describe clusters, we considered a cluster to be 3 or
more consecutive temperature readings that were adjudicated
as artifacts. We compared the distributions of the number of
clusters per case among the three methods (manual artifact
detection by anesthesiologists, the use of the slope-based
algorithm [algorithm 1], and the use of the interval-based

algorithm [algorithm 2]), as depicted in Multimedia Appendix
5. There was very good interrater reliability for the number of
artifactual data points (Gwet AC1 statistic 0.876, 95% CI
0.833-0.92) [16]. The distributions of the cluster sizes in each
case among the three methods is shown in Multimedia Appendix
6.
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Discussion

This study has important findings. First, the overall rate of
intraoperative temperature artifacts in the sample, which was
obtained via automated electronic health record data capture,
was low (point estimate 0.01, 95% CI 0.009-0.011). To the best
of our knowledge, our study is the first of its kind to address
the validity of raw intraoperative temperature recordings. Thus,
mean temperature values derived from raw data closely
approximate those derived by experts and may be directly used
for research purposes. Second, the slope-based algorithm can
filter intraoperative temperature artifacts, closely approximating
manual sorting by anesthesiologists. The artifact reduction
algorithm can thus be used by studies that evaluate the effect
of intraoperative hypothermia on patient outcomes. This
algorithm can also serve as a powerful tool for gauging the
quality of temperature data capture by a particular medical center
via comparisons to other medical centers. In addition, our
methodology can be used to validate similar algorithms aimed
at discerning artifacts associated with other vitals, such as
intraoperative blood pressure.

Our intraoperative temperature recordings are similar to those
in other studies evaluating intraoperative temperatures [17,18].
The majority of patients under general anesthesia tend to
experience a decrease in core body temperature [19,20]. This
pattern of change varies widely based on the type and duration
of surgery [21]. We saw similar patterns in our random sample
of intraoperative temperature records, which indicated that our
sample was not biased toward a particular subset of patients or
surgeries. Studies that have attempted to filter out artifacts
related to intraoperative temperature measurements lack
generalizability [10]. One of the key strengths of our study is
that, given the adaptability of the algorithms, they can be applied
by a particular medical center to filter intraoperative artifacts
both for research and for quality initiative purposes.

Our study has some limitations. First, due to the lack of a true
gold standard, manual artifact sorting by anesthesiologists was
considered a reasonable method for assessing the performance
of artifact detection. An alternate methodology for measuring
the artifacts could have been correlating esophageal temperatures
with temperature measurements that were simultaneously
captured from other sites, such as the bladder. However, very
few patients receive more than 1 temperature measurement
modality. Moreover, bladder temperatures lag behind esophageal
temperatures, which would make identifying a true artifact
difficult [1]. Additionally, each modality has its own limitations,
undermining the very notion of any single gold standard source

of core temperature readings. For example, bladder temperature
measurement devices are strongly influenced by urine flow [22].
Second, the algorithms were only validated for cases in which
nasopharyngeal or oropharyngeal temperature probes were used.
However, these probes are used for intraoperative temperature
measurement among the vast majority of patients. Third, this
study had a retrospective design. We chose to use this study
design, as conducting this study in real time would have been
very resource intensive. Moreover, having an observer could
have resulted in changes in clinician behavior. Due to the
retrospective nature of this study, we included cases in which
patient temperature data were automatically acquired via
oropharyngeal probes or nasopharyngeal probes. These probes
generally use thermistors or thermocouples, which are
considered standard for clinical use, though this was not a
standardized part of the study protocol, given its retrospective
design [1]. Further, the algorithms’ calculations are based on
changes in temperature and gradients of temperature change
during an anesthetic encounter, and the algorithms would fail
to detect artifacts if temperature probes were inappropriately
placed for the entirety of an anesthetic encounter. Fourth, it is
possible that outliers could have heavily influenced our
observations. In order to address this, we performed sensitivity
analyses of our results by re-estimating our result summaries
via the jackknife method—a “leave one observation out at a
time” approach. The jackknife estimates revealed that there
were no highly influential observations. The bias estimates
remained largely unchanged (Multimedia Appendix 7). Fifth,
we would also like to emphasize that while the slope-based
algorithm achieved a modest F-score, significant room for
improvement exists. However, this algorithm may be an
important first step in addressing the validity of automated
intraoperative temperature recordings and may serve as a
scaffold for further improved algorithms. Finally, the algorithms
may poorly extrapolate temperature-time curves that include
time gaps or time periods in which data were not collected, and
they may mask intraoperative temperature shifts that could have
occurred during these periods. Such anomalies, however,
happened infrequently and were detectable upon investigation.

In summary, it is widely recognized that intraoperative
temperature monitoring is key to postoperative patient outcomes.
Our study provides highly generalizable artifact reduction
algorithms that can be used as standard open-access tools to
filter out artifacts in large database studies. They can also be
used as tools for assessing the quality of intraoperative
temperature recordings at various centers. Further investigations
should assess our slope-based algorithm’s performance for other
intraoperative databases and populations.
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Multimedia Appendix 1
Intraoperative temperatures for a surgical case displayed as a function of time. Red dots indicate the temperature points that were
adjudicated by an anesthesiologist as artifactual.
[PNG File , 61 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Histogram showing the distribution of raw temperature data in the study cohort.
[PNG File , 296 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Bland-Altman plots for the interrater agreement analysis of areas under the curve (AUCs) for hypothermia; 95% limits of agreement
are shown with light blue lines, bias is shown as a dotted black line, and the agreement bias of 2 methods is shown as a solid red
line. Each dot represents a surgical case.
[PNG File , 103 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Bland-Altman plots for the interrater agreement analysis of mean temperature; 95% limits of agreement are shown with light
blue lines, bias is shown as a dotted black line, and the agreement bias of 2 methods is shown as a solid red line. Each dot represents
a surgical case.
[PNG File , 125 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Distribution of the number of temperature clusters (3 consecutive artifactual temperature readings), as adjudicated by experts,
algorithm 1, and algorithm 2.
[PNG File , 349 KB-Multimedia Appendix 5]

Multimedia Appendix 6
Distribution of the size of the clusters per case for the three methods (experts, algorithm 1, and algorithm 2).
[DOCX File , 25 KB-Multimedia Appendix 6]

Multimedia Appendix 7
Table depicting jackknife analysis versus full data to understand potential outlier effects.
[DOCX File , 14 KB-Multimedia Appendix 7]
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Abbreviations
AUC: area under the curve
MPOG: Multicenter Perioperative Outcomes Group
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