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Abstract

Background: Estimating surgical case duration accurately is an important operating room efficiency metric. Current predictive
techniques in spine surgery include less sophisticated approaches such as classical multivariable statistical models. Machine
learning approaches have been used to predict outcomes such as length of stay and time returning to normal work, but have not
been focused on case duration.

Objective: The primary objective of this 4-year, single-academic-center, retrospective study was to use an ensemble learning
approach that may improve the accuracy of scheduled case duration for spine surgery. The primary outcome measure was case
duration.

Methods: We compared machine learning models using surgical and patient features to our institutional method, which used
historic averages and surgeon adjustments as needed. We implemented multivariable linear regression, random forest, bagging,

and XGBoost (Extreme Gradient Boosting) and calculated the average R2, root-mean-square error (RMSE), explained variance,
and mean absolute error (MAE) using k-fold cross-validation. We then used the SHAP (Shapley Additive Explanations) explainer
model to determine feature importance.

Results: A total of 3189 patients who underwent spine surgery were included. The institution’s current method of predicting

case times has a very poor coefficient of determination with actual times (R2=0.213). On k-fold cross-validation, the linear

regression model had an explained variance score of 0.345, an R2 of 0.34, an RMSE of 162.84 minutes, and an MAE of 127.22

minutes. Among all models, the XGBoost regressor performed the best with an explained variance score of 0.778, an R2 of 0.770,
an RMSE of 92.95 minutes, and an MAE of 44.31 minutes. Based on SHAP analysis of the XGBoost regression, body mass
index, spinal fusions, surgical procedure, and number of spine levels involved were the features with the most impact on the
model.

Conclusions: Using ensemble learning-based predictive models, specifically XGBoost regression, can improve the accuracy
of the estimation of spine surgery times.

(JMIR Perioper Med 2023;6:e39650) doi: 10.2196/39650
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Introduction

Surgery is an important component of care for many patients
experiencing pathology of the spine. Lower back pain,
degenerative disease of the spine, and other related ailments
cost the United States tens of billions of dollars a year in direct
medical expenses and lost productivity [1]. Martin and
colleagues [2] reported the incidence of elective fusion of the
lumbar spine increasing over 60% from 2004 to 2015, with
hospital costs for such surgeries surging over 170% in the same
time to an average of over US $50,000 per admission. Despite
new trends in cost containment [3-5], new operative techniques,
expansion of surgical navigation and imaging systems,
implementation of specialized postoperative recovery pathways,
and increased demand for services in an aging patient population
have resulted in a complex, highly variable operational
environment [6-9]. Such heterogeneity can make planning and
use of resources challenging. The operating room is a critical
target for decreasing costs and is second only to the patient
room and board in the total expense of a perioperative episode
[10]. Many strategies for improving operating room efficiency
focus on time management [11,12]. Predicted surgical case
duration often informs how cases are scheduled and which
resources are dedicated to prepare for and staff them [13].
Consequently, improving the accuracy of these predictions is
a practical strategy to increase operating room efficiency [14].

Surgeons often estimate case durations when scheduling
operative time; durations may also be tied to historical averages
or Current Procedural Terminology (CPT) codes, practices that
are prone to substantial inaccuracies [15]. Classical statistical
methods have been used to further improve the prediction of
case durations [16-18]. The proliferation of electronic health
records and the associated generation of vast amounts of
previously uncaptured patient data have allowed for more
sophisticated analytics in several clinical arenas, including the
operating room [19]. With large enough data sets, specialized
algorithms can develop complex predictive models after being
exposed to a number of prior examples in a process known as
machine learning [20].

Current predictive techniques in spine surgery include less
sophisticated approaches such as classical multivariable
statistical models. While a variety of features and outcomes,
such as length of stay, prescription duration, and time to return
to normal work, have been predicted in previous studies, there
has been little focus on case duration [21-25]. To our knowledge,
no other studies have focused on using machine learning models
to predict the surgical case duration for the spine surgery
population, but the method has been implemented in other
procedures [26-28]. Spine surgery consists of heterogenous
anatomical and technical components that should theoretically
be taken into account when estimating case duration. The
primary objective of this study is to develop machine
learning-based predictive models using patient and

surgery-specific features. Specifically, we use ensemble
learning, which combines multiple predictive models to
determine an overall prediction of the outcome. We hypothesize
that such models can outperform those that estimate case
duration based on historic averages and surgeon preference
(which may not be scalable or transferable outside of a given
institution).

Methods

Ethics Approval
This retrospective study was approved (approval protocol
210098) by the Human Research Protections Program at the
University of California, San Diego for the collection of data
from our electronic medical record system. For this study, the
informed consent requirement was waived. Data were collected
retrospectively from the electronic medical record system of
our institution’s operating room data. Data from all patients that
underwent spine surgery from 3 different orthopedic spine
surgeons from January 2018 to September 2021 was extracted.
We excluded all patients that had missing data for actual case
duration; all other features with missing values were categorized
as unknown or imputed if they were continuous variables
(described below). This retrospective observational study abided
by the EQUATOR guidelines.

Primary Objective and Data Collection
The primary outcome measurement was a continuous value,
defined as the actual operating room case duration measured in
minutes (from patient wheeling into the operating room to
exiting the operating room). We implemented predictive models
using various machine learning algorithms to predict the actual
case duration. We compared this to our current system’s practice
of estimating case duration, which is equal to the mean of the
last 3 times the surgical procedure was performed, with the
ability of the surgeon to change times based on their preference.
The models developed were multivariable linear regression,
random forest regressors, bagging regressors, and XGBoost
(Extreme Gradient Boosting) regressors.

The independent features in the models were (1) categorical
features, which included surgical procedure (39 unique
procedures), surgeon identification (3 different surgeons),
American Society of Anesthesiologists Physical Status (ASA
PS) score (ie, comorbidity burden), sex, specific surgical details
(kyphoplasty, discectomy, fusion, and laminectomy), the anterior
approach involved (ie, approach surgeon used to access the
spine), and level of spine region involved (eg, cervical, thoracic,
lumbar, or a combination of levels); and (2) continuous features,
which included the number of spine levels involved in the

surgery (from 1 to 7) and body mass index (kg/m2) (Table 1).
For missing data on the ASA PS class, the value was defined
as “unknown.” For missing data on body mass index, the value
was imputed by using the average BMI among all patients with
known data for this feature.
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Table 1. Characteristics of all the cases included in analysis (N=3315).

Participants, n (%)OtherLevelsFusionApproachInstrumentationCharacteristics

Surgical Procedure

89 (2.7)Fusion1YesAnteriorNoDiscectomy

127 (3.8)Fusion2YesAnteriorNoDiscectomy

202 (6.1)Fusion3+YesAnteriorNoDiscectomy

8 (0.2)For deformity1-6 seg.YesPosteriorNoDeformity fusion

2 (0.1)For deformity7-12 seg.YesPosteriorNoDeformity fusion

270 (8.1)Lumbar2YesAnteriorNoLumbar fusion

14 (0.4)Lumbar3YesAnteriorNoLumbar fusion

1 (0.0)Lumbar1YesAnteriorNoOblique lumbar interbody fusion

9 (0.3)Lumbar1YesTransforaminalNoTransforaminal lumbar interbody fusion

251 (7.6)Lumbar1YesLateralNoExtreme lateral interbody fusion

198 (6.0)Lumbar2YesLateralNoExtreme lateral interbody fusion

63 (1.9)Lumbar3YesLateralNoExtreme lateral interbody fusion

16 (0.5)Lumbar4YesLateralNoExtreme lateral interbody fusion

1 (0.0)Thoracic1YesPosteriorNoThoracic fusion

7 (0.2)Thoracic2YesPosteriorNoThoracic fusion

17 (0.5)Thoracic3YesPosteriorNoThoracic fusion

12 (0.4)Thoracic4YesPosteriorNoThoracic fusion

35 (1.1)Thoracic5+YesPosteriorNoThoracic fusion

316 (9.5)All1NoN/ANoKyphoplasty or vertebroplasty

40 (1.2)Thoracolumbar2NoN/ANoKyphoplasty

19 (0.6)Thoracolumbar3NoN/ANoKyphoplasty

21 (0.6)Thoracolumbar4NoN/ANoKyphoplasty

148 (4.5)Lumbar1NoPosteriorNoLaminectomy or decompressive
laminectomy

106 (3.2)Lumbar2NoPosteriorNoLaminectomy or decompressive
laminectomy

110 (3.3)Lumbar3NoPosteriorNoLaminectomy or decompressive
laminectomy

109 (3.3)Cervical5YesPosteriorNoLaminectomy

115 (3.5)Cervical1-4YesPosteriorNoLaminectomy

3 (0.1)Cervical1-2NoPosteriorNoLaminectomy

31 (0.9)Cervical2+NoPosteriorNoLaminectomy

219 (6.6)Lumbar1YesPosteriorYesLaminectomy

259 (7.8)Lumbar2YesPosteriorYesLaminectomy

162 (4.9)Lumbar3YesPosteriorYesLaminectomy

259 (7.8)Lumbar4+YesYesLaminectomy

9 (0.3)Thoracic1YesPosteriorYesLaminectomy

9 (0.3)Thoracic2YesPosteriorYesLaminectomy

7 (0.2)Thoracic3YesPosteriorYesLaminectomy

18 (0.5)Thoracic4YesPosteriorYesLaminectomy

30 (0.9)Thoracic5YesPosteriorYesLaminectomy

3 (0.1)Thoracic6+YesPosteriorYesLaminectomy
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Participants, n (%)OtherLevelsFusionApproachInstrumentationCharacteristics

Specific surgical procedure included

396 (11.9)N/AN/AN/AN/AN/AaKyphoplasty

418 (12.6)N/AN/AN/AN/AN/ADiscectomy

2521 (76.0)N/AN/AN/AN/AN/AFusion

1597 (48.2)N/AN/AN/AN/AN/ALaminectomy

702 (21.1)N/AN/AN/AN/AN/AAnterior approach involved

Number of spine levels involved

1043 (31.5)N/AN/AN/AN/AN/A1

1050 (31.7)N/AN/AN/AN/AN/A2

594 (17.9)N/AN/AN/AN/AN/A3

441 (13.3)N/AN/AN/AN/AN/A4

174 (5.2)N/AN/AN/AN/AN/A5

11 (0.3)N/AN/AN/AN/AN/A6

2 (0.1)N/AN/AN/AN/AN/A7

Surgeon performing procedure

1676 (50.6)N/AN/AN/AN/AN/AA

191 (5.8)N/AN/AN/AN/AN/AB

1448 (43.7)N/AN/AN/AN/AN/AC

Level of spine involved

567(17.1)N/AN/AN/AN/AN/ACervical

228 (6.9)N/AN/AN/AN/AN/AThoracic

2165 (65.3)N/AN/AN/AN/AN/ALumbar

1800 (54.3)N/AN/AN/AN/AN/AMale sex

29.7 (6.3)N/AN/AN/AN/AN/ABMI (kg/m2), mean (SD)

ASA PSb classification score

46 (1.4)N/AN/AN/AN/AN/A1

1140 (34.4)N/AN/AN/AN/AN/A2

2008 (60.6)N/AN/AN/AN/AN/A3

112 (3.4)N/AN/AN/AN/AN/A4

9 (0.3)N/AN/AN/AN/AN/AUnknown 

aN/A: not applicable.
bASA PS: American Society of Anesthesiologists Physical Status.

Analysis Packages and Metrics
Python (version 3.7.5; Python Software Foundation) was used
for all statistical analyses. The code is provided in the webpage

[29]. We calculated the R2, root-mean-square error (RMSE),

mean absolute error (MAE), explained variance, and maximum
error for each iteration of k-fold cross-validation (described
below) and used those scores to calculate the median scores and
plot feature importance using SHAP (Shapley Additive
Explanations) and prediction error plots (Figure 1).
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Figure 1. Analysis pipeline-illustration of methodology. ASA: American Society of Anesthesiologists; CV: cross-validation; SHAP: Shapley Additive
Explanations.

Machine Learning Models

Overview
We compared various machine learning-based predictive models
to our institution’s conventional model, which predicted case
duration using average times (over the last 5 times the surgery
was performed by that surgeon) based on the CPT code of the
surgery plus adjustments from the surgical attending based on
clinical judgment or preference. First, we developed a model
using multivariable linear regression. We then evaluated the
use of ensemble learning (a process in which multiple models
are combined) to calculate a prediction. In this case, we used
random forest, bagging, and XGBoost-based regressors
(Multimedia Appendix 1). For each model, all features were
included as inputs.

Multivariable Linear Regression
This is a statistical model that asserts a continuous outcome
based on the weighted combination of the underlying
independent variables. We tested an L2-penalty-based regression
model without specifying individual class weights. This model
provides a baseline score and helps make the case for
improvement over the evaluation metrics.

Random Forest Regressor
Random forest is an ensemble approach (a technique that
combines the predictions from multiple machine learning
algorithms to make more accurate predictions than any
individual model) of decision trees. It is a robust and reliable
nonparametric supervised learning algorithm that acts as a means
to test further improvements in metrics and determine the feature
importance of a data set. The number of tree estimators was set
to 1000, the criterion chosen was “squared error,” and the

minimum number of samples required to split an internal node
was set to 2. All other parameters were left at their default
values.

Bagging Regressor
Bagging or bootstrap aggregation is another way to build
ensemble models. Bagging methods build several estimators
on different randomly selected subsets of data. Unlike random
forest models, bagging models are not sensitive to the specific
data on which they are trained. They would give a similar score
even when trained on a subset of the data. Bagging regressors
are also generally more immune to overfitting. We built a
bagging regressor using the scikit-learn package, where
replacement was allowed. The number of estimators was set to
1000 with the base of decision tree regressors, and the samples
were drawn with replacement (bootstrap was set to True). All
other parameters were left at their default values.

XGBoost Regressor
Boosting is another approach to ensemble learning in which
decision trees are built sequentially so that each subsequent tree
aims to reduce the error from the previous tree. Thus, each
subsequent tree learns from previous trees and updates the
residual errors. Unlike bagging, boosting uses decision trees
with fewer splits; XGBoost is an implementation of a
gradient-boosted tree algorithm [30]. We built an XGBoost
regressor using the xgboost version 1.7.1 package (xgboost
developers). The number of estimators used was 1000, the tree
method was set to “auto,” and the booster was set to “gbtree.”
All other parameters were left at their default values, as
described in the documentation of the library.
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Feature Importance
An important function of a model is to uncover potential features
that contribute to a given outcome. If a model can predict
surgical outcomes efficiently with good specificity, then we can
assume that the features of interest that are identified may be
relevant and important to the actual surgical outcome. These
models can often be opaque with many trees and features of
interest, making interpretation of the data difficult. To aid in
model interpretation, we used the SHAP model [31]. This
module allows for a value to be assigned to each feature used
to predict the outcome of a model. Additionally, it provides
whether that feature negatively or positively impacts the
outcome of that given prediction. If the score is very high or
very low, that feature weighs heavily on the model. If the score
is close to zero or not well separated, that feature is of lesser
importance. Once features are identified and given SHAP values,
interpretability is improved because features are concrete and
have been assigned importance. Features can then be validated
based on scientific rationale and further analysis.

k-Fold Cross-Validation
To perform a more robust evaluation of our models, we

implemented k-fold cross-validation to observe the R2, MAE,
RMSE, explained variance, and maximum error for 10 folds
after a shuffle. The data set was first shuffled to account for any
sorting and then split into 10 folds, where 1 fold serves as the
test set and the remaining 9 sets serve as the training set. This
was repeated until all folds had the opportunity to serve as the
test set. For each iteration, our performance metrics were
calculated on the test set. The median of each performance

metric (R2, RMSE, MAE, explained variance, and maximum
error) was calculated thereafter.

Results

Overview
There were 3523 spine surgeries identified during this period.
After exclusion criteria were applied, 3189 surgeries were

included in the final analysis. Among these, there were 39
different kinds of spine surgeries included. The majority of
cases involved spinal fusion (n=2433, 76.0%) and were
performed in the lumbar region (n=2082, 65.3%). The median
ASA PS score was 3, and the majority of patients were male
(n=1732, 54.3%; Table 1). The mean of actual surgical case
duration among all surgeries was 335.5 (SD 199.9) minutes.

Performance Evaluation Using Linear Regression
Using all features (Table 1), we developed various machine
learning algorithms to predict case duration. The base model,
which was the conventional approach against which all machine
learning models were compared, was based on our current
system’s method to predict surgical times, which is based on
the average of the surgical procedures’ case times over the last
5 instances with the ability for the surgeon to change times
based on clinical judgment or preference. There was a poor
coefficient of determination between the predicted time and

actual time based on this approach (R2=–0.213). We then
performed multivariable linear regression trained on 80% of

the data and tested on 20% of separate data, which had an R2

of 0.34. Features that were statistically significant in this model
included laminectomy (estimate=218.51, P<.001), number of
levels performed, ASA PS classification score, and lumbar
involvement (estimate=218.51, P<.001; Table 2).

Next, we implemented ensemble learning approaches to
predicting case duration, in which the models were trained on
80% of the data and tested on a separate 20% of the data. The

reason for the 80:20 split was to visualize the R2 metric for each

model (Figure 2). The R2 metrics for the linear regressor,
bagging regressor, random forest regressor, and XGBoost
regressor, as well as the currently used method, were 0.407,
0.812, 0.812, 0.832, and 0.213, respectively.
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Table 2. Results of the multivariable linear regression model predicting actual case duration. We included all features in the model. Because surgical
procedure had 39 different procedures, we omitted the values from the table, however, they were included in the model.

P valueSE (minutes)Estimate

.60119.13–61.89Intercept

Specific surgical procedure included

.0190.5–225.43Kyphoplasty

.7294.7–33.94Discectomy

.9475.96.17Fusion

<.00141.7218.51Laminectomy

.2893.6102.06Anterior approach involved

Number of spine levels involved

Reference1

.4277.862.572

.8280.6–18.153

.2565.374.414

<.00161.7246.185

.04106.7212.366

.002143.1445.137

Surgeon performing procedure

ReferenceA

.00313.1–38.37B

.476.04.32C

Level of spine involved

.0353.6115.84Cervical

.4434.626.56Thoracic

<.00152.3218.51Lumbar

.31171.7173.34Male sex

.470.520.38BMI (kg/m2)

ASA PSa classification score

Reference1

.3230.166.032

<.00125.997.433

.3230.129.984

.4960.241.97Unknown 

aASA PS: American Society of Anesthesiologists Physical Status.

Figure 2. Illustration of the correlation between actual times and predicted surgical times for spine surgery calculated by each model type: predicted
times based on procedural averages and surgeon preference or customization, multivariable linear regression, random forest, bagging, and Extreme
Gradient Boosting (XGBoost). The data set was split 80:20 (training:test), and the model was trained on the training set and validated on the test set.
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Median Performance Metrics of Models Using k-Fold
Cross-Validation
We calculated various performance metrics for each model by
applying a k-fold cross-validation approach and calculated the
median scores for each model (Table 3). The linear regression

model had an explained variance score of 0.34, an R2 of 0.40,
an RMSE of 162.84 minutes, and an MAE of 127.22 minutes.
Among all models, the XGBoost regressor performed the best

with an explained variance score of 0.778, an R2 of 0.77, an
RMSE of 92.95 minutes, and an MAE of 44.31 minutes.

SHAP analysis was performed to describe the features of the
XGBoost model with the most impact on model prediction since

it was the best-performing model based on the R2 (Figure 3).
Figure 3A illustrates the most important features per fold,
whereas Figure 3B illustrates the ranks of each feature’s
importance per fold. BMI and spine fusion were consistently
the top 2 most impactful features. In order of feature importance,
there were then surgical procedure, number of spine levels,
operating surgeon, the anatomic location being the lumbar spine,
ASA PS classification score, sex, kyphoplasty, the anatomic
location being the cervical spine, anterior approach,
laminectomy, the anatomic location being the thoracic spine,
and discectomy.

Table 3. Performance of each machine learning approach predicting case duration of spine surgery. Calculation is based on the median quantified by
k-fold cross-validation for the bagging regressor, linear regression, random forest regressor, and XGBoost regressor. Current method is based on average
of the last 5 instances of the surgery with surgeons input to modify time.

R 2RMSEb (minutes)MAEa (minutes)Max errorExplained varianceModel or method

–0.57243.30180.328470.012Current method

0.34162.84127.21526.290.345Linear regression

0.7696.5162.82454.590.768RFc regressor

0.7696.5162.83454.900.769Bagging regressor

0.7792.9544.31475.720.778XGBoost regressor

aMAE: mean absolute error.
bRMSE: root mean square error.
cRF: random forest.
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Figure 3. Feature importance from the Extreme Gradient Boosting based on SHAP (Shapley Additive Explanations) values. (A) SHAP analysis for
each of the 10 folds; (B) a heat map of the frequency of ranks for each feature per k-fold.

Discussion

Principal Findings
We found that the use of ensemble learning with the patient and
procedural-specific features (variables that are known
preoperatively and attainable from the electronic medical record
system) outperformed the prediction of spine surgery case
duration when compared to models that use historic averages
and surgeon preferences. Unique to our approach of predicting
surgical time for this heterogenous surgical population was the
granularity of features (eg, patient and surgical characteristics)
combined with an ensemble learning approach. The reference
model (the time estimated based on historic averages and
surgeon preference) had poor performance. We then
implemented machine learning-based models using features
including procedural details (ie, number of spine levels, patient
positioning, surgeon, level of spine region involved, etc) and
patient-specific details (ie, body mass index, sex, ASA score,
etc) and demonstrated improved performance. While linear

regression improved R2 to 0.34, the use of XGBoost, random
forest, and bagging improved it further (0.77, 0.71, and 0.71,
respectively). Such models could be relatively easy to integrate
into a resource-capable electronic medical record system, given
that the included features could be obtained automatically from
the electronic record preoperatively.

The usage of historic averages or CPT code-based estimations
for spine surgery scheduling may be inaccurate given that some
determinants of case duration may not be accounted for in the
prediction. These features include surgeon experience, level of
the spine region involved, number of levels, type of surgery (ie,
kyphoplasty, fusion, laminectomy, etc), need for multiple
surgeries, patient positioning, and patient body mass index. The
inclusion of these features into our models results in a substantial
improvement in prediction accuracy. Accurate prediction of
operation times has long been discussed as a means to improve
operating room efficiency and patient care [14]. Recent
implementations of such models have demonstrated these
improvements across a variety of measures. A recent randomized

JMIR Perioper Med 2023 | vol. 6 | e39650 | p. 9https://periop.jmir.org/2023/1/e39650
(page number not for citation purposes)

Gabriel et alJMIR PERIOPERATIVE MEDICINE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


clinical trial found that a machine-learning approach increased
prediction accuracy, decreased start-time delay, and decreased
total patient wait time [32]. A similar randomized controlled
trial demonstrated increased throughput and decreased staff
burnout [32,33]. Subsequently, decreases in delays and wait
times result in lower costs and increased caseloads, which can
further drive cost-effectiveness [34,35]. Associations between
wait times and postoperative complications provide evidence
that proper identification and mitigation of delays can improve
outcomes as well [36]. Overall, improvements in patient
scheduling, case duration, and staffing may result in enhanced
efficiency and potentially superior patient outcomes.
Understanding and identifying the features that are key in
lessening the burden of misused surgical time is crucial with
the trending increases in caseload burden and impacted hospital
resources.

Ensemble learning essentially uses an “ensemble” of predictive
models and calculates the overall prediction based on the
individual predictions from each model within the “ensemble.”
In this case, we leveraged ensemble learning using decision
tree-based machine learning algorithms: random forest, bagging,
and boosting. Our results demonstrated a substantial
improvement with XGBoost compared to the other ensemble
approaches as well as linear regression. XGBoost often performs
better than random forest because it prunes nodes if the gain of
a node is minimal to the model [30]. Random forest generates
the tree to a greater depth because it does not prune nodes and
relies on a majority vote for the outcome. This can result in
overfitting in random forest models. Random forest may also
give preference to classes that are associated with categorical
variables, which do not occur in XGBoost. Because XGBoost
is an iterative process, it gives preference to features that enable
the regressor to predict low-participation classes. Additionally,
XGBoost is more efficient with the unbalanced data sets often
seen in medical or biological data. Alternatives such as linear
regression work well when the data is straightforward and
well-distributed. The more complex the data set, the better a
bagging or tree-based model will work. With ensemble
approaches, nonlinear relationships between features may be
captured, and a “strong” model is developed based on learning
from “weaker” models, in which residual errors are improved.
Thus, the use of ensemble learning in this clinical
scenario—where there is a complex interplay between
features—may be superior to a statistical approach that only
models linear relationships (ie, linear regression). Future studies
may benefit from other approaches such as support vector
machines, which could be implemented to focus on accuracy,
or penalized regressors, which could provide increased
interpretability.

Oftentimes, machine learning approaches are described as “black
boxes” because the interpretation of the importance of features
to the predictive model is challenging. The implementation of
an explainer model such as SHAP values is one way to elucidate
the importance of features. In this study, SHAP identified that
BMI is the most important feature of the model and provides
weight and context to the feature about the other identified
features [37,38]. BMI may be associated with increased case
duration due to the additional technical and positioning

challenges. Sex was also identified as an important feature. This
finding is congruent with current research that demonstrates
women are more likely to have bone loss earlier than men, and
bone loss has been shown to affect surgical outcomes and
recovery due to poor bone remodeling and healing [39,40].
Other interesting features with an important impact included
the operating surgeons themselves, the ASA PS classification
score, and the number of spine levels operated. It makes sense
to include surgeons as a feature in predictive modeling as each
physician may have different styles and comfort levels that
could impact surgical time. The ASA PS classification score
represents a patient’s comorbidity burden and could suggest
that patients with a higher comorbidity burden would require
longer anesthesia times. Finally, it makes sense that the number
of spine levels contributes to case duration, as this has a
potentially linear relationship to how long surgery would take.
Being able to put various features into the context of the research
question is essential for translating the findings into actionable
metrics. Overall, the SHAP analysis identified clinically relevant
features for future exploration and evaluation.

There are several limitations to the study, mainly its
retrospective nature; thus, the collection and accuracy of the
data are only as reliable as what is recorded in the electronic
medical record system. The current institutional practice for
estimating scheduled case duration was based on the historic
averages of the last 5 surgeries, with the surgeon’s ability to
change the times based on clinical judgment or preference. We
do not have data on why and when surgeons changed the times.
In addition, there were some missing data for actual case
duration, but this only led to the removal of 5.9% of the initial
data set. There may also be several features not included in the
models that may substantially contribute to time estimates,
including surgical resident involvement (and their level of
training) or surgical instruments used. Furthermore, there are
other machine learning algorithms that we did not test, including
support vector machines and penalized regressors. Despite these
limitations, we were able to develop a predictive model using

XGBoost with a high R2 value (>0.7). These findings would
need to be validated externally and prospectively to determine
their generalizability to spine surgeries.

Conclusions
Operating room efficiency is a key factor in maintaining and
growing institutional profits. Additionally, improvements in
operating room efficiency contribute to enhanced patient care
and satisfaction. Given the technical and anatomical
heterogeneity in spine surgeries, it has been a challenge to
predict case duration using conventional methods at our
institution. This method can be applied in the future to standard
and heterogenous surgical procedures with or without class
imbalance to identify key obstacles to future surgical efficiency;
however, it is crucial to develop robust models to more
accurately predict schedule case length. In our study, we
demonstrated that patient and surgical features that are easy to
collect from the electronic medical record can improve the
estimation of surgical times using machine learning-based
predictive models. Future implementation of machine
learning-based models presents an alternative pathway to use
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electronic medical record data to advance surgical efficiency and enrich patient outcomes.
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