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Abstract

Background: Pelvic organ prolapse (POP) refers to symptomatic descent of the vaginal wall. To reduce surgical failure rates,
surgical correction can be augmented with the insertion of polypropylene mesh. This benefit is offset by the risk of mesh
complication, predominantly mesh exposure through the vaginal wall. If mesh placement is under consideration as part of prolapse
repair, patient selection and counseling would benefit from the prediction of mesh exposure; yet, no such reliable preoperative
method currently exists. Past studies indicate that inflammation and associated cytokine release is correlated with mesh complication.
While some degree of mesh-induced cytokine response accompanies implantation, excessive or persistent cytokine responses
may elicit inflammation and implant rejection.

Objective: Here, we explore the levels of biomaterial-induced blood cytokines from patients who have undergone POP repair
surgery to (1) identify correlations among cytokine expression and (2) predict postsurgical mesh exposure through the vaginal
wall.

Methods: Blood samples from 20 female patients who previously underwent surgical intervention with transvaginal placement
of polypropylene mesh to correct POP were collected for the study. These included 10 who experienced postsurgical mesh
exposure through the vaginal wall and 10 who did not. Blood samples incubated with inflammatory agent lipopolysaccharide,
with sterile polypropylene mesh, or alone were analyzed for plasma levels of 13 proinflammatory and anti-inflammatory cytokines
using multiplex assay. Data were analyzed by principal component analysis (PCA) to uncover associations among cytokines and
identify cytokine patterns that correlate with postsurgical mesh exposure through the vaginal wall. Supervised machine learning
models were created to predict the presence or absence of mesh exposure and probe the number of cytokine measurements required
for effective predictions.

Results: PCA revealed that proinflammatory cytokines interferon gamma, interleukin 12p70, and interleukin 2 are the largest
contributors to the variance explained in PC 1, while anti-inflammatory cytokines interleukins 10, 4, and 6 are the largest
contributors to the variance explained in PC 2. Additionally, PCA distinguished cytokine correlations that implicate prospective
therapies to improve postsurgical outcomes. Among machine learning models trained with all 13 cytokines, the artificial neural
network, the highest performing model, predicted POP surgical outcomes with 83% (15/18) accuracy; the same model predicted
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POP surgical outcomes with 78% (14/18) accuracy when trained with just 7 cytokines, demonstrating retention of predictive
capability using a smaller cytokine group.

Conclusions: This preliminary study, incorporating a sample size of just 20 participants, identified correlations among cytokines
and demonstrated the potential of this novel approach to predict mesh exposure through the vaginal wall following transvaginal
POP repair surgery. Further study with a larger sample size will be pursued to confirm these results. If corroborated, this method
could provide a personalized medicine approach to assist surgeons in their recommendation of POP repair surgeries with minimal
potential for adverse outcomes.

(JMIR Perioper Med 2023;6:e40402) doi: 10.2196/40402
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Introduction

Pelvic organ prolapse (POP), defined as symptomatic descent
of the vagina and surrounding pelvic organs, affects
approximately 50% of parous women and 6% of nonparous
women between ages 20 and 59 years [1], with almost 300,000
POP surgeries performed per year [2]. To reduce anatomical
recurrence, surgical treatment may include the insertion of
polypropylene mesh into the vaginal wall to provide mechanical
support and reinforcement of the prolapsed organs.
Unfortunately, postsurgical mesh complication, predominantly
mesh exposure through the vaginal wall, occurs with some
frequency and results in decreased quality of life, leaving
patients with costly residual symptoms and emotional distress
[3]. Patients may elect for surgical reintervention to revise or
remove the mesh implantation. In fact, according to Reid et al
[4], 37 (8%) out of 482 patients underwent further surgery to
remove the mesh, and 7 (2%) patients repeated the prolapse
surgery. These complications provoked the removal of
transvaginal mesh kits from the market by the Food and Drug
Administration in 2019. A clinical decision support tool to better
inform both patients and surgeons about the risk of
complications following POP surgery may allow for the
reintroduction of this advantageous surgical augmentation.

Inflammatory responses are associated with mesh exposure due
to asymptomatic mesh infection that inhibits the mesh from
integrating with the surrounding environment [5]. While some
degree of mesh-induced cytokine response is necessary for
successful implantation, excess or unattenuated cytokine
response could result in chronic inflammation and implant
rejection. As chronic inflammation progresses, granulation
tissues formed during the foreign body reaction will evolve into
mesh encapsulation by regular dense connective tissue and
myofibroblast-induced contracture around the implant, which
can result in mesh exposure [6,7]. The balance between
proinflammatory and anti-inflammatory agents is critical in
achieving successful mesh implantation, and this balance may
be influenced by the individual's response to the implant
material. Thus, leveraging a patient’s immune response to the
biomaterial could facilitate the prediction of postsurgical
outcomes.

Leveraging a patient-specific, multifaceted immune response
for the prediction of postsurgical complications is an ideal
problem for the application of principal component analysis

(PCA) and supervised machine learning models. In fact, this
approach has been used to predict complications following other
surgical procedures as well as progressive disease outcomes.
In a liver transplant study, Raji and Vinod Chandra [8] applied
PCA to a composite medical data set comprised of donors’
medical information as well as the recipients’ medical history
and implemented an artificial neural network to predict the
long-term survival of liver transplant patients. In an oral cancer
retrospective study by Chu et al [9], PCA along with bivariate
analyses were used to highlight correlated variables from the
patient data, which included patient demographics and
clinicopathological tumor data (including tumor sites, disease
staging, etc), and to predict oral cancer progress.

PCA and supervised machine learning have also been applied
to biological measurements for predicting medical outcomes.
Tseng et al [10] built a predictive model for cardiac
surgery–associated acute kidney injury (AKI) using preoperative
biochemistry data in combination with patient demographic
characteristics and clinical condition. Incorporating a different
type of biological measurement, a glioblastoma study by Akbari
et al [11] used PCA and support vector machines to distinguish
multiparametric magnetic resonance imaging signatures and
quantify the patterns to predict regions of tumor recurrence after
surgery. Chen et al [12] demonstrated that specifically including
immune data in predictive models enhances predictive capacity.
These researchers implemented machine learning models using
individual patient immune data, such as blood cytokine levels,
to predict severe AKI after cardiac surgery and found that this
approach provided a far superior prediction tool compared to a
clinical factor–based model [12].

The application of PCA and machine learning to predict
postsurgical complications in women after POP surgery has
also shown promising results. In the study of Jelovsek et al [13],
statistical modeling uses 32 candidate risk factors (ie, age, race,
smoking history, etc) identified by consensus with surgical
outcomes to predict postsurgical complications. This approach
of using personalized preoperative decision-making based on
the individual’s medical history presents a better predictive
model to postsurgical complications and offers a more effective
decision support tool than the practice of counseling patients
using average success rates reported from large, randomized
studies [13]. However, this predictive method does not leverage
the patient’s potential immune response to the surgery involving
polypropylene mesh.
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In this preliminary study, we explored the levels of baseline
and stimulus-induced cytokines in blood isolated from patients
who had undergone POP repair surgery with a polypropylene
mesh. Proinflammatory and anti-inflammatory cytokine levels
from these data were analyzed using PCA to establish the
principal components (PCs) and to identify associative or
opposing trends among cytokines. In addition, supervised
machine learning models were applied to demonstrate predictive
capabilities when models were trained with either all 13
cytokines or a smaller group of 7 cytokines determined most
effective by a random forest method. The results demonstrate
that leveraging PCA and supervised machine learning models
to predict outcomes of vaginal mesh implantation has the
potential to benefit future patients when they are faced with this
surgical decision, which carries a relatively high risk of
unsuccessful surgical outcome.

Methods

Study Population
In total, 20 healthy, nonpregnant female participants aged 56-89
years at Prisma Health Greenville Memorial Hospital with a
history of surgical intervention to correct POP via a procedure
that used polypropylene mesh were selected for the study. The
participants, who were not matched, included 10 who
experienced postsurgical mesh complication in which the
implanted mesh protruded through the vaginal wall (also referred
to as mesh exposure) and 10 participants who did not experience
this complication post surgery. This sample size was estimated
as an effective cohort for the pilot study using a 1-tailed t test
based on an a priori power analysis, which indicates the number
of patients for a given theoretical minimum study power as a
function of the expected difference between patients with and
those without mesh exposure, or the Cohen d. We assumed a
conservative study power of 0.80 and a 100%, or 2-fold,
difference in the level of a given cytokine between individuals
with and without mesh exposure, equivalent to a Cohen d of 1.
Here, 20 patients with equal distribution among the 2 groups
are needed to observe the difference with a probability of .1.
Participants with POP recurrence or taking medications that
would alter inflammatory response were excluded from this
study.

Ethics Approval
The study protocol was approved by the institutional review
board (IRB) of Prisma Health (Pro00067964). Informed consent
from all study participants was obtained using an IRB-approved
informed consent form. All samples collected and data analyzed
were deidentified and followed IRB protocol.

Blood Sample Collection and Processing
Blood samples were obtained from the 20 selected participants.
Approximately 12 mL of blood was drawn from the upper
extremity of each participant into 3 BD Vacutainer
EDTA-coated tubes. Deidentified blood samples were then
transferred on ice to a laboratory facility at the University of
South Carolina School of Medicine Greenville for immediate
processing. Each participant’s blood sample was divided into
equal aliquots for 24-hour incubation at 37 °C under 3 distinct

conditions: (1) incubation with inflammatory agent
lipopolysaccharide (LPS) at 20 ng/mL (positive control), (2)
incubation with sterile polypropylene mesh area of 2 cm × 2
cm (experimental), and (3) incubation alone (negative control).
After incubation, the plasma layer was collected following
centrifugation (1500 × g, 10 min, 4 °C) and immediately stored
at –80 °C.

Measurement of Blood Cytokine Levels
Cytokine levels in each blood sample were quantified using the
bead-based MILLIPLEX Human Cytokine/Chemokine/Growth
Factor Panel A—Immunology Multiplex Assay (EMD Millipore
Corp), which is composed of analytes for target cytokines
interleukin 1α (IL-1α), IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10,
IL-12p40, IL-12p70, IL-17A, interferon-gamma (IFN-γ, tumor
necrosis factor-alpha (TNF-α), and granulocyte-macrophage
colony-stimulating factor (GM-CSF). Frozen plasma samples
were thawed at room temperature and analyzed following
Milliplex protocol guidelines. Cytokine concentrations were
measured using a Bio-Plex 200 (Bio-Rad) and Bio-Plex Manager
software (Bio-Rad). Sample volume was doubled to ensure
measurable levels of cytokines, and assay output data were
adjusted to reflect concentrations in plasma samples. Each
multiplex assay was performed in duplicate, and cytokine levels
were evaluated in 3 independent measurements.

Data Analysis

Overview
Cytokine data gathered from the multiplex immunoassay were
analyzed using data mining and predictive analytical methods.
PCA was used to identify important cytokines by studying their
contributions to each PC as well as to discern associations
between cytokines. Supervised machine learning models were
created to determine whether cytokine levels can accurately
predict which patients are more likely to experience mesh
exposure post surgery.

Descriptive Analytics
The statistical programming language R (version 4.1.2; R
Foundation) was used to analyze raw cytokine data values
generated from the multiplex immunoassay. The imported data
structure contained 60 observations (20 participants × 3
independent measurements) and 40 total variable fields
(13 cytokines × 3 blood treatments + 1 target variable). The
target variable was the participant’s outcome, which indicated
a postsurgical complication that participants might have
experienced following POP surgery. Observations marked
“presence” represent participants who experienced mesh
exposure through the vaginal wall. Observations marked
“absence” represent participants who did not experience any
mesh exposure through the vaginal wall. Univariate and
multivariate methods were used to explore the data set, including
identifying missing values, analyzing outliers, and visualizing
frequency distributions.

PCA
PCA was performed using the FactoMineR package (version
2.4; R Foundation) [14] to identify associations between
cytokines [15]. Before analysis, data transformations were
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performed on each variable to correct for skewness in the
distribution. The amount of skewness was calculated to assess
the symmetry of distribution for each variable using equation

1, where is the sample mean and xi and n are the individual
observations and number of observations, respectively, within
the sample [16]. Each cytokine’s distribution was corrected for
skewness using either a natural logarithm, square root, or inverse
square root method. Using equation 2, z-score standardization
was also applied to scale each cytokine variable, thus ensuring
that the mean was equal to 0 and SD equal to 1. Biplots were
created to visualize PCs with the highest degree of variance
explained. The eigenvectors were overlayed on the biplots to
visualize correlations and identify hidden patterns between
cytokines.

Predictive Analytics
Supervised machine learning models were created using the
caret package (version 6.0-90; R Foundation) [17] in the R
programming language. The 4 models trained were decision
tree, logistic regression, Naive Bayes, and artificial neural
network. This approach focused on the data set from the
experimental group only (cytokine expression for blood
incubated with polypropylene mesh). Prior to creating the
predictive models, the original data were split using an industry
standard of 70% for training and 30% for testing. Each group
contained an equal distribution of participants who did or did
not experience postsurgical mesh exposure through the vaginal
wall—the prediction target for each model. Each model was
then trained using the 70% (42/60) subset and a cross-validation
training control. A 10-fold cross-validation with 25% (15/60)
left out replicated 3 times was used on each model to avoid bias

and overfitting. From this, training accuracies are reported.
Additional testing was performed for the prediction accuracy
of each model using the 30% (18/60) test data. Prediction
accuracies are reported along with sensitivity and specificity
for the prediction of participants to experience postsurgical
mesh exposure.

Additionally, this process was replicated to study the effects of
reducing the number of cytokines needed to predict a
postsurgical mesh exposure. A random forest algorithm was
used to select important cytokines for this study. These models
were trained and tested for accuracy, sensitivity, and specificity
as detailed above. The results are compared to models trained
with all 13 cytokines.

Results

PCA
To identify significant associations among the cytokines, PCA
was used to examine a total of 60 blood samples (20 participants
× 3 blood treatments). Among the 20 participants, 10
experienced postsurgical mesh exposure through the vaginal
wall and 10 did not. Figure 1 depicts a biplot of each blood
treatment and summarizes the intercorrelated relationships
among individual inflammatory mediators. The combined
variances explained for PC 1 and PC 2 in blood samples
incubated with LPS (Figure 1A), polypropylene mesh (Figure
1B), or alone (Figure 1C) were approximately 64%, 73%, and
66%, respectively. In all 3 treatment groups, IL-10 and IL-4
align in the same directions, as do IL-12p70 and IFN-γ,
indicating a positive correlation for both of these cytokine pairs.
In contrast, IL-6 and IL-12p40 were negatively correlated when
comparing stimulation of blood via LPS (Figure 1A) versus
polypropylene mesh (Figure 1B). Only IL-1α displayed a
negative correlation when comparing blood incubated with
polypropylene mesh (Figure 1B) versus blood incubated alone
(Figure 1C).

Figure 1. PCA was performed using cytokine levels in blood samples of postsurgical POP subjects; the analysis included 60 blood samples (20 subjects
× 3 blood treatments), wherein each sample was evaluated in 3 independent measurements performed in duplicate. Biplots illustrating individual
cytokines were constructed for blood samples incubated in the presence of LPS (A), incubated in the presence of polypropylene mesh (B), or incubated
alone (C). Arrow direction indicates the cytokine correlation; arrow length indicates the magnitude of the variation. IL-1α: interleukin-1 alpha; IL-1β:
interleukin-1 beta; IL-2: interleukin-2; IL-4: interleukin-4; IL-6: interleukin-6; IL-8: interleukin-8; IL-10: interleukin-10; IL-12p40: interleukin-12p40;
IL-12 p70: interleukin-12p70; IL-17A: interleukin-17A; IFN-γ: interferon gamma; TNF-α: tumor necrosis factor-alpha; GM-CSF: granulocyte-macrophage
colony-stimulating factor; PC: principal component.

When PCA was used to examine only blood samples incubated
with polypropylene mesh, PC 1 and PC 2 explained 60.1% and

13.1% of the total data variance, respectively (Figure 1B). Figure
2A displays each cytokine’s contribution to PC 1 and illustrates
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that IFN-γ, IL-12p70, and IL-2 are the predominant contributors
to the variance explained in PC 1. In addition, IL-1α, IL-17A,
and TNF-α exhibited contributions above a level expected if
the contributions were uniform. All other cytokines have
contributions to PC 1 similar to or less than what would be
expected if the contributions of all cytokines were uniform.
Figure 2B illustrates that the predominant contributors to the
variance explained in PC 2 are IL-10, IL-4, and IL-6. All other
cytokines have contributions to PC 2 similar to or less than what
would be expected if the contribution of all cytokines were
uniform.

In order to visualize associations between the participants
presenting the absence or presence of postsurgical mesh
exposure through the vaginal wall, a biplot illustrating individual
participants was created (Figure 3). This biplot reveals a high
percentage of variability represented by the first 2 PCs (79.1%).
Blood samples from participants who did not experience
postsurgical mesh exposure were heavily represented by positive
PC 1 values, while blood samples from participants with the
presence of postsurgical mesh exposure were generally
represented by positive PC 2 values.

Figure 2. PCA was performed using cytokine levels in patient blood samples incubated with polypropylene mesh; the analysis included 20 blood
samples (20 subjects × 1 blood treatment), wherein each sample was evaluated in 3 independent measurements performed in duplicate. Each cytokine’s
contribution to PC 1 (A) and PC 2 (B) was determined. The dashed line at 7% corresponds to the expected value if the contribution were uniform. IL-1α:
interleukin-1 alpha; IL-1β: interleukin-1 beta; IL-2: interleukin-2; IL-4: interleukin-4; IL-6: interleukin-6; IL-8: interleukin-8; IL-10: interleukin-10;
IL-12p40: interleukin-12p40; IL-12p70: interleukin-12p70; IL-17A: interleukin-17A; IFN-γ: interferon gamma; TNF-α: tumor necrosis factor-alpha;
GM-CSF: granulocyte-macrophage colony-stimulating factor; PC: principal component.

Figure 3. PCA was performed using cytokine levels in patient blood samples incubated with polypropylene mesh; the analysis included 20 blood
samples (20 subjects × 1 blood treatment), wherein each sample is represented by the average of 3 independent measurements performed in duplicate.
A biplot was constructed illustrating individual patient averages (indicated by numbers) exhibiting the presence (red triangle) or absence (green circle)
of mesh exposure through the vaginal wall. Concentration ellipses draw focus to the distribution of a group with the presence (red) or absence (green)
of mesh exposure. Centroids of the concentration ellipses (large symbols) indicate the mean of each group. PC: principal component.

Predictive Analysis
Four supervised machine learning models incorporating all 13
cytokines were trained using 70% (42/60) of the available 60
observations (20 participants × 3 independent measurements);
the remaining 30% (18/60) was used to test the models’accuracy
when predicting the presence of mesh exposure through the
vaginal wall. All 4 machine learning machines achieved at least
62% (26/42) training accuracy (Table 1). Artificial neural

network achieved the highest prediction accuracy of 83%
(15/18), while decision tree and Naïve Bayes both achieved a
prediction accuracy of 61% (11/18). Naïve Bayes, decision tree,
and artificial neural network excelled at correctly predicting
patients with the presence of mesh exposure postsurgery at 89%
(16/18). Artificial neural network was superior for correctly
predicting patients who did not experience mesh exposure
postsurgery (14/18, 78%).
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Table 1. Summary of supervised learning model statistics. All 13 cytokines were used to predict the presence or absence of postsurgical mesh exposure
through the vaginal wall; 70% (42/60) of observations were used for training, and 30% (18/60) of observations were used for testing.

Prediction, κSpecificity, n (%)Sensitivity, n (%)95% CIPrediction accuracy,
n (%)

Training accuracy,
n (%)

Model

0.66716 (89)14 (78)0.586-0.96415 (83)33 (79)Artificial neural network

0.22216 (89)6 (33)0.57-0.82711 (61)27 (64)Decision tree

0.22216 (89)6 (33)0.357-0.82711 (61)26 (62)Naïve Bayes

0.0008 (44)10 (56)0.260-0.7409 (50)31 (73)Logistic regression

Predictive Analysis Using Feature Selection
Additional models and predictive analyses explored whether a
smaller set of cytokines could achieve similar predictive results.
Feature selection using a random forest method identified a
group of 7 cytokines capable of yielding effective predictive

analysis: IL-1β, IL-8, IL-12p40, IL-12p70, TNF-α, IL-17A,
and IL-6. Figure 4 illustrates that models exhibited variation
among the importance of cytokines when implementing this
more targeted group of cytokines. IL-1 and IL-8 are strongly
represented in all models, while IL-6 is important in only Naïve
Bayes.

Figure 4. A random forest algorithm was used to identify a group of 7 cytokines capable of yielding effective predictive analysis. The importance of
each cytokine is evident in individual supervised learning models: ANN (A), DT (B), NB (C), and LR (D). IL-1α: interleukin-1 alpha; IL-1β: interleukin-1
beta; IL-2: interleukin-2; IL-4: interleukin-4; IL-6: interleukin-6; IL-8: interleukin-8; IL-10: interleukin-10; IL-12p40: interleukin-12p40; IL-12p70:
interleukin-12p70; IL-17A: interleukin-17A; IFN-γ: interferon gamma; TNF-α: tumor necrosis factor-alpha; GM-CSF: granulocyte-macrophage
colony-stimulating factor; PC: principal component; ANN: artificial neural network; DT: decision tree; NB: Naïve Bayes; LR: logistic regression.

Table 2 illustrates that all models achieved at least 64% (27/42)
training accuracy. The logistic regression model that used the
7 selected cytokines achieved a training accuracy of 81%
(34/42), a prediction accuracy of 72% (13/18), a sensitivity of
67% (12/18), and a specificity of 78% (14/18), and thus
outperformed compared to the logistic regression model that
incorporated all of the cytokine data. Moreover, decision tree

models achieved the same result when using the selected
cytokines or when all cytokines were included. The prediction
accuracy in Naïve Bayes and artificial neural network models
executed with the 7 selected cytokines decreased by only 5%
each compared to the same models that used all of the cytokine
data.

Table 2. Summary of supervised learning model statistics. Feature selection via random forest was used to identify a group of 7 cytokines capable of
yielding effective predictive analysis. The subset of cytokines was used to predict the presence or absence of postsurgical mesh exposure through the
vaginal wall; 70% (42/60) of observations were used for training, and 30% (18/60) of observations were used for testing.

Prediction, κSpecificity, n (%)Sensitivity, n (%)95% CIPrediction accuracy,
n (%)

Training accuracy,
n (%)

Model

0.55616 (89)12 (67)0.524-0.93614 (78)34 (81)Artificial neural network

0.22216 (89)6 (33)0.356-0.82711 (61)27 (64)Decision tree

0.11114 (78)6 (33)0.308-0.78510 (56)30 (72)Naïve Bayes

0.44414 (78)12 (67)0.465-0.90313 (72)34 (81)Logistic regression

Discussion

Summary
Among patients with POP who undergo mesh implantation
surgery, 17% of them experience mesh exposure through the
vaginal wall [18]. This rate of surgical mesh complication is
significant when compared to 0.035%-5.4% mesh-related
erosions reported in other mesh-based surgeries [19-23],
necessitating the development of a personalized decision support
tool for patients with POP. This exploratory study demonstrates
a novel and efficient approach to predicting postsurgical

outcomes for mesh implantation using cytokine levels in patient
blood following exposure to a biomaterial. Previous studies
have often used patient demographic and medical data to train
machine learning programs to create predictive outcomes for
POP mesh surgeries [13]. In contrast, this study uses biological
material to mimic an in vivo response, thus presenting a novel,
noninvasive, personalized clinical decision tool. A systematic
PCA approach identifies associations among cytokines that
provide physiological insight. Supervised machine learning
models developed in this study demonstrate that blood cytokine
measurements may be used as a predictive tool. In addition, the
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number of cytokine measurements needed may be reduced
without compromising predictive capabilities, rendering this
approach more applicable within a clinical setting.

Principal Findings and Comparison to Prior Work
The PCA analysis illustrated in Figure 1 reveals several
significant associations among the cytokines. Several cytokines
display positive correlations when comparing the 2 different
stimuli: LPS and polypropylene mesh. However, IL-6 and
IL-12p40 are negatively correlated between these 2 treatments.
Thus, these 2 cytokines may explain the different inflammatory
responses induced by LPS versus polypropylene mesh. When
comparing blood samples incubated alone to those incubated
in the presence of polypropylene mesh, only IL-1α exhibits a
negative correlation, demonstrating that this proinflammatory
mediator might be specifically affected by the mesh stimulus.
Furthermore, 2 pairs of cytokines positively correlate (IL-10
and IL-4; IL-12p70 and IFN-γ), indicating that one of the
cytokines in each pair could be eliminated to reduce the number
of cytokines tested in a clinical setting.

The cytokines that contribute most to each PC segregate into
proinflammatory and anti-inflammatory cytokines (Figure 2).
When cytokine data from patient blood incubated with mesh
were analyzed using PCA, cytokines IFN-γ, IL-12p70, and IL-2
were the largest contributors to the variance explained in PC 1.
These markers are identified as proinflammatory agents [24-26],
which suggests that proinflammatory cytokines may heavily
influence PC 1. In contrast, cytokines IL-10, IL-4, and IL-6
were the largest contributors to the variance explained in PC 2.
IL-4 and IL-10 are prominent anti-inflammatory cytokines [25],
suggesting that anti-inflammatory cytokines heavily influence
PC 2. IL-6, previously thought to have proinflammatory function
only, is recently recognized as potentially having both
proinflammatory and anti-inflammatory roles in COVID-19
[27] and diabetes [28].

When juxtaposing the biplot of polypropylene-stimulated
cytokine observations (Figure 1B) with that of mesh exposure
outcome (Figure 3), it can be extrapolated that proinflammatory
cytokines IL-12p40, IL-1α, and TNF-α are positioned in the
region of the biplot that uniquely corresponds to surgical
outcomes involving the presence of mesh exposure through the
vaginal wall. Such juxtaposition suggests that IL-12p40, IL-1α,
and TNF-α may be associated with the presence of postsurgical
mesh exposure. These observations may inspire potential
therapeutic strategies that could improve postsurgical outcome.
For example, the surgical mesh could be designed to modulate
these key proinflammatory cytokines. In this way, while
supporting the pelvic structure, the mesh could simultaneously
function in controlling the cytokine response to minimize
biomaterial rejection.

Table 1 describes the accuracy of supervised machine learning
models and demonstrates that cytokines can exhibit predictive
capabilities. Previous studies have performed predictive analysis
for POP using risk factors derived from patient medical history
[13]. However, such data can be incomplete and inaccurate [29].
This study demonstrates the utility that measured responses of
biological samples can also have in developing robust predictive
models. Chen et al [12] similarly used blood cytokine levels in

a machine learning study to predict severe AKI after cardiac
surgery. Their study concluded that a logistic regression model
was the most effective in discovering the cytokine associations
in severe AKI. In this study, the prediction accuracy for all 4
models exceeded 60%, with the artificial neural network model
demonstrating the best overall performance, predicting POP
surgical outcomes with 83% (15/18) accuracy when trained
with all 13 cytokines. This predictive capability is similar to
that reported for prediction derived from patient medical history
[4], despite this study comprising a significantly smaller patient
group. Considering the small population size, these results
represent relatively high prediction accuracy for health care
data.

When creating models trained with a subgroup of 7 cytokines
(Table 2), selected using a random forest method, the artificial
neural network model maintained the greatest effectiveness with
respect to sensitivity, specificity, and prediction accuracy.
Moreover, the group of selected cytokines outperformed the
larger group of cytokines in the logistic regression model and
achieved the same results in the decision tree model. The Naïve
Bayes and artificial neural network prediction accuracy dropped
only 5% when using the subgroup of cytokines, thus
demonstrating the resiliency of these models. These results
demonstrate that predictive capabilities are retained with fewer
cytokines, which would enhance clinical feasibility by reducing
the cost and time associated with this clinical decision tool.

Limitations and Future Directions
This study implemented rigorous research methods to identify
physiological relationships among cytokine markers and
developed robust machine learning models to predict mesh
exposure; yet, some limitations should be noted. First, because
this is a pilot study, the sample size is limited to 20 participants
within a single hospital system. Nevertheless, this limited sample
size predicted 83% (15/18) accuracy, a level that compares
favorably with another predictive model study by Chu et al [9]
that achieved a prediction accuracy of 71% in a study population
size of 467. Thus, the results of this pilot study indicate the
utility of this approach and the merit of future studies. Future
study will provide validation with a larger population of
participants from multiple hospitals. Additionally, the 10
participants in each group were not matched regarding variables.
To minimize confounders, patients with POP recurrence or
taking medication that would alter inflammatory response were
excluded and the age ranges and average age at the time of
surgery within each group were similar. Future studies with a
larger population, however, will benefit from matching
participants with respect to these and other potentially
confounding variables. Nonetheless, the results of this pilot
study highlight the importance of inflammatory markers in the
prediction of this postsurgical condition.

Conclusions
While this preliminary study is limited to a sample size of just
20 participants, this novel approach to using cytokine response
to predict POP surgical outcomes has successfully distinguished
important cytokines and their correlations. Moreover, these
relationships point toward prospective therapies that could
promote better surgical outcomes. Supervised learning models
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also demonstrate a high level of accuracy, specificity, and
sensitivity, even when a smaller group of cytokine data is used.
This result suggests that blood cytokine analysis might be
feasibly used in a clinical setting to predict POP surgical
outcomes. Further study with a larger patient population will

be needed to confirm the utility of this method. If successful at
a larger scale, this approach has the potential to change
perspectives in which surgeons would recommend and proceed
with POP repair surgeries and to prevent undesired outcomes
of mesh-related surgeries in patients.
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