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Abstract

Background: The minimally invasive nature of thoracoscopic surgery is well recognized; however, the absence of a reliable
evaluation method remains challenging. We hypothesized that the postoperative recovery speed is closely linked to surgical
invasiveness, where recovery signifies the patient’s behavior transition back to their preoperative state during the perioperative
period.

Objective: This study aims to determine whether machine learning using triaxial acceleration data can effectively capture
perioperative behavior changes and establish a quantitative index for quantifying variations in surgical invasiveness.

Methods: We trained 7 distinct machine learning models using a publicly available human acceleration data set as supervised
data. The 3 top-performing models were selected to predict patient actions, as determined by the Matthews correlation coefficient
scores. Two patients who underwent different levels of invasive thoracoscopic surgery were selected as participants. Acceleration
data were collected via chest sensors for 8 hours during the preoperative and postoperative hospitalization days. These data were
categorized into 4 actions (walking, standing, sitting, and lying down) using the selected models. The actions predicted by the
model with intermediate results were adopted as the actions of the participants. The daily appearance probability was calculated
for each action. The 2 differences between 2 appearance probabilities (sitting vs standing and lying down vs walking) were
calculated using 2 coordinates on the x- and y-axes. A 2D vector composed of coordinate values was defined as the index of
behavior pattern (iBP) for the day. All daily iBPs were graphed, and the enclosed area and distance between points were calculated
and compared between participants to assess the relationship between changes in the indices and invasiveness.

Results: Patients 1 and 2 underwent lung lobectomy and incisional tumor biopsy, respectively. The selected predictive model
was a light-gradient boosting model (mean Matthews correlation coefficient 0.98, SD 0.0027; accuracy: 0.98). The acceleration
data yielded 548,466 points for patient 1 and 466,407 points for patient 2. The iBPs of patient 1 were [(0.32, 0.19), (–0.098, 0.46),
(–0.15, 0.13), (–0.049, 0.22)] and those of patient 2 were [(0.55, 0.30), (0.77, 0.21), (0.60, 0.25), (0.61, 0.31)]. The enclosed areas
were 0.077 and 0.0036 for patients 1 and 2, respectively. Notably, the distances for patient 1 were greater than those for patient
2 ({0.44, 0.46, 0.37, 0.26} vs {0.23, 0.0065, 0.059}; P=.03 [Mann-Whitney U test]).

Conclusions: The selected machine learning model effectively predicted the actions of the surgical patients with high accuracy.
The temporal distribution of action times revealed changes in behavior patterns during the perioperative phase. The proposed
index may facilitate the recognition and visualization of perioperative changes in patients and differences in surgical invasiveness.

(JMIR Perioper Med 2023;6:e50188) doi: 10.2196/50188
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Introduction

Challenges in Defining Invasiveness
Contemporary surgery favors minimally invasive techniques,
synonymous with endoscopic procedures, which are now widely
used. However, robust evidence of their minimal invasiveness
is lacking [1]. This may be attributed to the absence of a reliable
method for evaluating surgical invasiveness.

Despite the advent of modern endoscopic surgery and its various
indicators, the definition of invasiveness remains controversial.
Parameters are mostly derived from medical perspectives, such
as adverse event rates, analgesic use, and hospital stay duration
[2-9]. Nevertheless, statistical differences in such indicators,
unrelated to the patients’ daily lives, lack practicality and
relevance [10].

Focus and Objective of the Study
On the basis of our postoperative observations, the rapid
behavior recovery following endoscopic surgery surprised us,
particularly during the early perioperative phase. This
observation led us to believe that minimal invasiveness is
associated with the swift restoration of patients’activity patterns.

Therefore, we aimed to establish an indicator that focuses on
postoperative behavior recovery as a measure of surgical
invasiveness. Patients gradually transition from rest to sitting,
standing, walking, and finally returning to their preoperative
lifestyles. A higher degree of invasiveness requires longer rest
periods. This behavior change mirrors invasiveness. Knowing
the behavior change as a quantitative indicator allows us to
gauge invasiveness.

Although inpatient behavior patterns can be discerned by
directly observing actions [11], human resources and privacy
concerns arise, resulting in invasions of privacy. Therefore, we
leveraged human activity recognition (HAR) technology to
mitigate these issues by using machine learning and sensor data
for activity detection [12-16].

Our investigation focused on the feasibility of understanding
the behavior patterns of perioperative patients by using machine
learning and a compact triaxial acceleration sensor. Moreover,
we explored whether the knowledge of perioperative behavior
patterns can yield a novel quantitative invasiveness index.

Methods

Ethical Considerations
This study was approved by the institutional ethics committee
(R201519) and registered with the University Hospital Medical
Information Network Individual Case Data Repository
(UMIN000026843). We obtained written informed consent
from all patients.

Patients

Overview
Among patients undergoing thoracoscopic surgery for lung
lobectomy or tumor biopsy for thoracic malignancy at our
institute (National Hospital Organization Saitama Hospital), 2

patients who could walk independently before surgery and who
provided written consent to participate in this study were

included. One patient was admitted to a 36 m2 inpatient room
with a toilet shared by 4 patients. The patient ate food from a
bedside table and chair.

Perioperative medical care was provided in accordance with
institutional clinical pathways. The patient was allowed to walk
from the morning of postoperative day (POD) 1 with no
obligatory transfers from the hospital room, except for daily
chest radiographs. No behavior restrictions were imposed on
the patient, and no rehabilitation was performed. Epidural
analgesia was administered to control postoperative pain.

The following factors affecting the perioperative course were
recorded: background (sex, age, and medical history); surgical
procedure; operative time; blood loss; date of their walking
resumption; drain removal date; amount of analgesics used; and
duration of postoperative hospitalization.

A wearable sensor (myBeat; UNION-TOOL Corporation)
40.8×37.0×8.9 mm in size was used to measure accelerations,
including gravity, in 3 orthogonal axes. The sensor was affixed
to the center of the anterior chest of each participant. Data were
measured from 9 AM to 5 PM on the preoperative day and
during the postoperative period from POD 1 to the day before
discharge.

Computer programs for data processing, analysis, and statistical
testing were implemented using Python (version 3.9.16).

Selecting Learning Models to Predict Patients’ Actions
Among Classifiers
Seven classifier models were trained and evaluated: decision
tree, logistic regression, linear-type support vector machine,
kernel-type support vector machine, random forest (RF),
gradient boosting classifier (GBC), and light-gradient boosting
method (LGBM).

The classification models were trained using supervised data
and the k-fold cross-validation method and then compared using
the Matthews correlation coefficient (MCC) and accuracy as
evaluation indices. A grid search was performed to determine
optimal parameters. The features were validated using the
correlation coefficient and importance scores among the decision
tree–type estimators.

The 3 top-performing learned models with the highest MCC
percentages were selected as the learning models to predict the
patient’s actions.

An open data set from the University of California School of
Information and Computer Science repository was used as
supervised data for machine learning. The data set was created
at the Universitat Politècnica de Cataluña (UPC). Six actions
were labeled in the UPC data set: WALKING,
WALKING_UPSTAIRS, WALKING_DOWNSTAIRS,
SITTING, STANDING, and LAYING. The data set contained
941,056 training data points. The raw acceleration training data
from the data set were used as the supervised data set.
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Data Preprocessing
Acceleration data were obtained as 3D vector data for the x-,
y-, and z-axes. The axis directions were set to the x-axis of the
data for gravity, y-axis for the patient’s right side, and z-axis
for the patient’s rear side.

The measured data were separated into body acceleration vectors
(BodyAcc) and gravity acceleration vectors (GravAcc) using
bandpass filters. The BodyAcc magnitude was calculated as the
root sum of the squares of BodyAcc. The Euler angles were
calculated using GravAcc: the pitch and roll angles of the body
axis in the direction of gravity.

The primary data set for calculating the features comprised 3
BodyAcc components, 3 GravAcc components, the BodyAcc
magnitude, and 2 Euler angles.

The added features of the frequency component calculated from
the metrics in the primary data set with fast Fourier
transformation and 6 features for machine learning were used
as test data: the median and SD of the acceleration value,
frequency with the maximum amplitude, maximum amplitude
value, phase, and mean frequency.

The primary data set and features for the training data were
created from the raw data in the UPC data set using the same
process as that used for the test data.

Prediction Aggregation
The actions of the patients were predicted using the 3 learning
models selected. The actions predicted by the model that showed
an intermediate prediction among the 3 models were considered
as the actions of the patient.

In addition, the daily frequency of each activity was calculated.
By dividing the frequency by the measured time of day, the
proportion of time each action appeared per unit of time was
calculated and defined as the action-specific indicator of the
day, representing the appearance probability (AP). The
appearance time (min) of an action per hour was calculated by
multiplying the AP by 60.

To prevent accidents, patients were not allowed to use the stairs
at the facility. Therefore, by combining 2 actions
(WALKING_UPSTAIRS and _DOWNSTAIRS) with the
WALKING action, 6 action classification labels were recounted
into 4 categories: walking, standing, sitting, and lying. The 4

APs—walking (APwk), standing (APst), sitting (APsi), and
lying down (APly)—were summed to 1.

Calculating Behavior Pattern Indices
A chart with x- and y-axes was prepared, and 4 vectors with 4
orthogonal directions were placed on the chart. The 4 vectors
were APly at coordinates (0, APly); vAPwk (0, –APwk); vAPsi
(APsi, 0); and vAPst (–APst, 0).

The index of behavior pattern (iBP) was created from the 4 AP
vectors (vAP) to easily recognize the day-by-day transition of
the AP balance in the chart. The new index was defined as the
center-of-gravity vector coordinates of the 4 vAP. The iBP has
a vector with coordinates (x, y) using the following formula:

iBP(x, y) = ((APsi – APst) / 2, (APly – APwk) / 2) (1)

The iBP on each measurement day was plotted on a chart to
evaluate the participants’ iBP changes.

The following additional indicators were calculated to evaluate
the iBP:

1. The area enclosed by the line segments sequentially
connects the coordinates of the daily
iBP.

2. Day-by-day distance between 2 sequential points of
iBP
from day-n to day-n+1.

|iBPn+1 – iBPn| (n=0, preoperatively)

1. Distance from the starting point: between the iBP point on
day n and the preoperative day.

|iBPn – iBP0| (n=0, preoperatively)

1. Total sum of the day-by-day distances from the starting
point.

∑|iBPn – iBP0|

Results

Patients
Table 1 presents the participants’ characteristics. Patient 1 was
a man aged 70 years who underwent thoracoscopic resection
of the right lower lobe of the lung for lung cancer. Patient 2 was
a man aged 71 years who had undergone thoracoscopic biopsy
of an enlarged mediastinal mass (malignant lymphoma).
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Table 1. Characteristics of the patients.

Patient 2Patient 1

7170Age (years)

MaleMaleSex

Mediastinal tumor (malignant lymphoma)Lung cancerDisease

Incisional biopsy of a tumor under VATSRight lower lobectomy under VATSaSurgical procedures

1:485:06Operation time (h: min)

11186Blood loss (mL)

Analgesic

None, due to side effectFentanyl citrate 0.72 mg mountContinuous epidural analgia

Suppository (2 counts)Not usedOther

Postoperative course

POD 1PODb 1Resuming walk

POD 2POD 2Removing the chest drain

Measured data

Pre, POD 1-3Prec, POD 1-4Measurement period

Total number (in whole days)

466,407548,466Measured acceleration data

1,399,2211,645,398All metric data

aVATS: video-assisted thoracoscopic surgery.
bPOD: postoperative day.
cPre: preoperative day.

Preprocessing Data
The total number of data points measured for the 2 participants
was 1,014,873 (Table 1).

The measured data were recognized as 3 small-amplitude and
high-frequency time-series signals with spike noise (Figure 1
provides an overview of the measured data of patient 1).

BodyAcc and GravAcc were extracted from the measured
acceleration data using a high-pass filter with a stopband
frequency of 1.5 Hz or a low-pass filter with a passband
frequency of 3 Hz. BodyAcc was denoised using a low-pass
filter with a stopband frequency of 10 Hz and a Hampel-type
filter. GravAcc was denoised using a Hampel-type filter, and

the moving average method was used at intervals of 50 (Figure
2 provides an overview of the denoised data of patient 1).

The Euler angles, which are the pitch and roll angles, were
calculated from the extracted gravitational acceleration vectors
with the direction of gravity as the axis (Figure 3). The pitch
angle exhibits a characteristic stepwise waveform that reflects
the movement of the upper body.

The labeled training data showed that 3 WALKING actions
(WALKING, WALKING_UPSTAIRS, and
WALKING_DOWNSTAIRS) were characterized by periodic
changes in acceleration, whereas the acceleration values of the
other actions were constant (Figure 4).
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Figure 1. All measured triaxial acceleration data of the patients. (A) Patient 1; (B) Patient 2.

Figure 2. Body and gravitational acceleration data after noise elimination (data from patient 1 on the preoperative day).

Figure 3. Pitch and roll angles (data from patient 1 on postoperative day 4).
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Figure 4. Training data by labels (only part of the supervised data).

Selecting 3 Learning Models to Predict Actions
In validating the features, the correlation coefficients among
the features were high between the median gpitch and yaw and
between the “median Gravity Y” and “median Gravity Z”
(Figure 5). However, the scatter graph of their correlations
shows that they can be used to separate LAYING (Figure 6).
Feature importance scores trended to be higher in “median
Gravity X” and “median Gravity Y” and lower in features
related to the frequency component. However, all features
contributed to the prediction (Figure 7).

The cross-validation results for the trained models at the
best-tuned parameters showed that the LGBM, GBC, and RF
classifiers were the top performers with the highest mean MCCs,
and the MCC values and accuracy were LGBM (mean MCC

0.98, SD 0.0027; mean accuracy: 0.98), GBC (mean 0.96, SD
0.0053; accuracy: 0.96), and RF (mean 0.95, SD 0.0079;
accuracy: 0.95; Multimedia Appendix 1). The macroaverage
accuracy scores for the best MCC scores were as follows:
LGBM (MCC: 0.98; accuracy: 0.99; precision: 0.99; recall:
0.99; F1-score: 0.99), GBC (MCC: 0.97; accuracy: 0.97;
precision: 0.97; recall: 0.97; F1-score: 0.97), and RF (MCC:
0.96; accuracy: 0.96; precision: 0.97; recall: 0.97; F1-score:
0.97; Multimedia Appendix 2).

An analysis of the confusion matrices of the 3 classifiers showed
that all had a 100% accuracy rate for LAYING, with no false
positives or false negatives. Few prediction errors were observed
between level walking and stair up or down, and most errors
were between SITTING and STANDING (Figure 8).
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Figure 5. Correlation heat map in terms of median feature data.

Figure 6. Correlations by label in features with high correlation coefficient.
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Figure 7. Feature importance. GBC: gradient boosting classifier; DT: decision tree; RF: random forest; LGBM: light gradient boosting method.

Figure 8. Confusion matrices of the best 3 learned classifiers. (A) Light gradient boosting method; (B) Gradient boosting classifier; (C) Random forest.

Aggregation of Predicted Actions
The 3 learned classifiers were provided with the test data and
predicted actions. The appearance time per hour was calculated
from the results (Multimedia Appendix 3).

Although slight differences in the prediction of the 3 classifiers
are observed, they are generally consistent with the overall
8-hour measurement time (Figure 9).

The LGBM classifier exhibited intermediate values between
the other 2 learned classifiers predicting actions using the test
data. Therefore, the actions predicted by the LGBM classifier
were considered the actions of the patients, and the action
frequencies were calculated. Figure 10 shows the day-by-day
changes in actions.

Patient 1 spent 11.5 minutes lying down per hour preoperatively
and 0.4 minutes walking. On POD 1, the lying time increased
to 27.5 minutes, and the walking time was 0.0 minutes. On POD

4, the lying down time decreased to 6.7 minutes, and the walking
time increased to 0.2 minutes, which were near the preoperative
values. The APly on POD 1 was significantly greater than that
on the other days (P=.001; 1-sample 1-tailed t test).

Patient 2 had a walking time of 0.0 minutes per hour during
hospitalization. Their standing time was 4.5 minutes
preoperatively, which decreased to 0.5 minutes on POD 1; the
lying time decreased from 17.9 to 12.7 minutes. Conversely,
their sitting time increased from 37.7 to 44.0 minutes. On POD
2, the percentages of lying down, sitting, and standing times
were close to the preoperative values. APsi on POD 1 was
greater than that on other days (P=.01; 1-sample t test). APly
on POD 1 was less than the preoperative value; however, the
difference was statistically insignificant (P=.06; 1-sample t test).

The average APst of patient 1 was greater than that of patient
2 (P<.001; independent-sample t test), whereas APsi of patient
2 was greater than that of patient 1 (P=.005; independent-sample
t test).
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Figure 9. Action time diagram (patient 1, postoperative day 4). LGBM: light gradient boosting method. GBC: gradient boosting classifier. RF: random
forest.

Figure 10. Day-by-day changes in the actions determined by the learned light-gradient boosting method classifier: (A) patient 1 and (B) patient 2.

Calculating Behavior Pattern Indices
The iBP values were calculated (Table 2) and plotted to
determine the proportional changes for all actions (Figure 11).

In Figure 11, the preoperative index of the behavior pattern is
expressed as point O and POD N is expressed as point N on the
chart.

The regions enclosed by these points are colored. The area of
the region bounded by the shift in coordinates was larger than
that of patient 2. Figure 12 shows circles with equal areas
enclosed by the iBP points. The differences between the 2 areas
became clearer.

The accumulated bar on the left shows the sum of all distances,
and the numbers indicate the distances. The bars on the right
represent the distance from the preoperative day to the day of
the procedure. “to POD N” means from preoperative day to
POD N.

The distance gradually decreased after surgery. The values of
patient 1 were greater than those of patient 2 (P=.03;
Mann-Whitney U test).

Figure 13 illustrates the Euclidean distances between the iBP
points on the surgery and preoperative days.
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Table 2. Change in behavior pattern indices by date.

Index of behavior patten (x, y)

Patient 1

(0.32, 0.19)Prea

(−0.098, 0.46)PODb 1

(−0.15, 0.13)POD 2

(−0.049, 0.22)POD 3

(0.071, 0.11)POD 4

Patient 2

(0.55, 0.30)Pre

(0.77, 0.21)POD 1

(0.60, 0.25)POD 2

(0.61, 0.31)POD 3

aPre: preoperative day.
bPOD: postoperative day.

Figure 11. Index of behavior pattern (iBP) on a graph: (A) patient 1 and (B) patient 2.

Figure 12. Differences in an area enclosed by behavior pattern indices: (A) patient 1 and (B) patient 2.
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Figure 13. Euclidean distances between behavior pattern indices: (A) total distance and (B) last distance.

Discussion

Principal Findings
The principal findings are summarized as follows: first, by
leveraging the latest artificial intelligence technology, the
behavior patterns of perioperative patients can be accurately
predicted using thoracic movement measurements alone.
Second, a novel index derived from changes in behavior patterns
demonstrated the potential to quantify surgical invasiveness.

The learned models (decision tree–type estimators) trained with
an open data set accurately predicted the behavior actions of a
surgical patient. The mean MCCs and accuracies were as
follows: LGBM (0.98, 0.98), GBC (0.96, 0.96), and RF (0.95,
0.95). As shown in Figure 10, the time courses of actions
predicted by the machine learning model based on the patient’s
acceleration data were aligned with the empirically known
behavior changes in postoperative patients.

The proposed index, built on each patient’s behavior patterns,
effectively visualizes the disparities in physical activity among
surgical patients with varying degrees of invasiveness. As shown
in Figure 11, in both patients, point 1 (the index of POD 1) was
farthest from point O (the preoperative index), and the points
gradually moved closer to point O on each day. The differences
in movements of the patients’ indices were clearly visualized.
The moving distances of patient 1 were significantly greater
than those of patient 2 (P=.03; Mann-Whitney U test).

Comparison With Prior Work

New Perspective on Surgical Invasiveness
Compared with previous studies, a distinctive aspect of this
research is the novel approach for assessing surgical
invasiveness using the proposed index. This index was designed
based on the final response to surgical invasion manifesting as
changes in patients’ behavior patterns during the early
perioperative period (Figure 14). In addition, this study
incorporated the latest advancements in machine learning
technology.

Figure 14. Various indicators of surgical invasiveness. CK: creatine kinase. IL6: interleukin 6. CRP: C-reactive protein. PaO2: partial pressure of
arterial oxygen.

Patient-Oriented Indicator Independent of Medical
Parameters
Unlike conventional indices that rely on chemical or
hospital-related parameters, the proposed index adopts a
patient-oriented approach. It provides relevant and
understandable information to patients, thereby facilitating their

transition to daily life. As shown in Figure 11, point 2 of patient
2 has already returned to approximately point O. This indicates
that on day 2, patient 2 could act similarly as before the surgery,
without an additional load. The primary concern for patients
undergoing invasive procedures is the time required to resume
their preoperative lifestyle [17] and not the values of chemical
or hospital indicators [7,8] unrelated to their daily life activities.
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Perioperative Indicator Focusing on the Rest State
Although previous studies have often evaluated indicators
several weeks after surgery [18-20], this study uniquely assessed
the changes in behavior patterns during the early perioperative
period. This distinction arises from this study, which focused
on the remaining states of surgical patients. Although some
prior studies have explored changes in behavior patterns after
invasive events, they focused on active levels rather than activity
at rest [21,22]. Numerous investigations have aimed to measure
postoperative recovery using activity meters and step counts
[23-27]; however, these efforts have yielded limited success,
particularly during the perioperative period [14]. This might be
attributed to the relatively short walking duration observed in
hospitalized patients, both before and after the surgery [28-30].
The inherent limitations of the hospital environment, such as
confined spaces, can restrict the patients’ ability to walk
extensively, diminishing the use of traditional methods to
capture subtle variations in their daily activities [31].

We noted a change in the sitting time of patient 2 on POD 1.
As expected, the lying time for patient 1 was prolonged after
their major surgery. However, the sitting time for patient 2 was
prolonged instead of their lying time. This may mean that the
level of invasiveness experienced by patient 2 was insufficiently
significant to require lying down but did require rest while
sitting.

Vectorized Index
The proposed index is represented by vector data. Previous
studies used simple scalar values [1,7-9,20,32]. Using only
scalar indicators, comparisons between days and patients can
be executed; vectorization, as illustrated in Figure 11, offers
distinct advantages. Although 4D tensorization by the 4 APs is
required to retain complete information, this complicates the
visualization process.

Therefore, we transformed each scalar AP value into an AP
vector by assigning directional values. Subsequently, to unify
the 4 AP vectors into a single vector, we defined the
center-of-gravity vector coordinates based on the 4 AP vectors.
This vector was established as a new index, iBP.

When using a vectorized representation, the index captures both
the direction and magnitude, both of which have clinical
significance. By interpreting the preoperative index values as
the patient’s origin point, a vector directed toward this origin
signified daily recovery. In both patients, the iBP returned was
close to its origin, as expected.

The magnitude of the vector, which corresponds to the distance
from the origin, reflects the magnitude of the patient’s response
to the surgical intervention. Any vector between the 2 indices
denotes the magnitude of behavior change during that period,
highlighting any increase or decrease in invasiveness.

Noninvasive Measurement Method During Perioperative
Period
Acceleration was measured noninvasively, devoid of
interventions that could impact the patients’ recovery processes,
such as exercise testing [33]. The small sensor affixed to the
chest wall did not disrupt patient behavior during the

perioperative period. This approach allows for painless
acceleration measurement and enhances patient comfort and
compliance. The sensor was removed at night during sleep to
ensure the patient’s ease.

Using the HAR Technology Clinical Research Method
HAR technology is a modern approach for monitoring and
comprehending human movement and behavior by integrating
sensor devices and algorithms, including machine learning [34].
Initially, HAR relied primarily on accelerometers [35], as used
in this study. With subsequent advancements in sensor
technology, it has evolved to encompass sensor fusion
techniques that integrate various sensors, such as gyroscopes,
magnetometers, and barometers, and physiological sensors,
such as heart rate monitors. This integration enables real-time
analyses of complex motions [36]. This technology has already
been integrated into numerous smartphones and applied in
diverse fields including drone and robot attitude controls [37].
In the medical field, particularly rehabilitation, analyses of
walking strides [38] and fall-related events in patients [16] have
been reported. The implementation of machine learning
continues to emerge in the context of medical research. The
HAR technology used in this study represents a fundamental
aspect of the current HAR technology. Few studies, such as
ours, have applied it as a clinical research method, underscoring
its potential and significance [34,35].

Limitations

Validity of the New Index as an Invasiveness Indicator
This study did not assess the validity of the new index as an
invasiveness indicator because of the absence of reliable
methods for surgical invasiveness [1]. Consequently, we selected
patients for 2 cases in which all surgeons agreed on the
difference in surgical invasiveness. Although the 2 patients were
of the same sex and similar in age, a notable disparity in surgical
invasiveness existed between incisional biopsy and radical
resection of the lung lobe and lymph nodes. The operation times
were 306 and 108 minutes, and the blood loss volumes were
186 and 11 mL, respectively. In future studies, we plan to
conduct further research using a larger number of cases.

Validity of the Categorization of Actions
We assumed that the breakdown of static position time was
essential for evaluating recovery in the early postoperative
period. Therefore, this study categorized patient behaviors into
3 static postures (ie, lying, sitting, and standing) and 1 dynamic
action (ie, walking). The results sufficiently suggest the patient’s
behavior pattern for 8 hours during the daytime, although many
other actions and postures are possible.

Current HAR technology cannot completely recognize quick
dynamic actions or complex postures without periodicity [39].
Human postural changes are very complex, rapid, and varied
to be accurately determined using machine learning. Considering
the various actions for behavior prediction would result in poorer
accuracy. Fortunately, we determined that walking times in
hospitalized patients were short and that patients spent much
time at rest. We assumed that other actions and behaviors
accounted for a small part of the total action time during
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hospitalization and could be ignored, such as changes in posture
and elevator movements.

Validity of the Methodology for Predicting Behavior
Among the many machine learning methods, supervised learning
methods are considered more reliable for tasks with statistically
strong characteristic data, as in this study [1,13,28,40,41]. As
shown in our results, the prediction accuracy was high and
reliable. Using the latest artificial intelligence technology
enabled us to convert approximately 1 million acceleration data
points into a single paired numerical index.

Validity of Supervised Data Set
This study used the UPC data set [42] as supervised data because
of its reliability. However, most publicly available data sets for
HAR [37,43] are problematic because many volunteers
supplying their data are young. Supervised data in future studies,
particularly in those analyzing dynamic actions, should be
collected from older adult volunteers and patients, if possible.

Validity of Selection of Measured Items and Features
Although the selected features produced accurate predictions
consistent with the objectives of the study, the importance scores
for the features associated with the frequency components were
lower for the decision tree–type classifier. As a preliminary
experiment, multiple iterations were performed using various
UPC data set features. Despite these efforts, the prediction
accuracy for the 4 action categories did not improve as expected.
Consequently, only elementary statistics (median and SD) were
selected as features for the triaxial acceleration data. In addition,
the amplitude, frequency, and phase values after the fast Fourier
transform were selected for detecting walking actions with a
wave-like data morphology. Composite acceleration and Euler
angles complemented the main items and were expected to
reflect the patient’s center-of-gravity acceleration, with a larger
mean magnitude indicating more active movement. Among the
added features, the median yaw angle of gravity ranked second
in the importance scores, just after both the median Gravity X
and Y, followed by the SD and median of BodyAccMag (Figure
7). The reason for the overall low importance scores of the
frequency components is that the behavior classification in this
study focused on static states without considering complex
dynamic actions or postural transformations. Therefore, future
studies on feature selection are required.

Limitation of Detection Using Only a Sensor With
Triaxial Acceleration Data
In this study, we selected a sensor that is certified for medical
applications in Japan. Using a single sensor presents a challenge
in distinguishing between sitting and standing positions.
Although the sensor captured only the triaxial acceleration, its
prediction accuracy was satisfactory for our study objectives.
Fixing the sensor to the anterior chest wall maintains the sensor

direction constant and simplifies the behavior prediction. Many
public HAR data sets stem from unfixed smartphones that lack
direction and location specificity. Another factor that resulted
in high accuracy was the surgical patient context. The patients
could walk independently throughout the study; however, their
behavior was curtailed in the hospital, devoid of running or long
walks. We attribute these factors to high prediction accuracy.
Although attaching an additional sensor can potentially broaden
the range of classified actions, multiple sensors introduce
technical complexities such as maintaining a precise
synchronization.

Future Directions
Future studies should validate the proposed index with more
cases to determine whether it reflects invasiveness.

Nonetheless, the applicability of this new index is not limited
to patients who have undergone surgery. Because it relies solely
on patient behavior, it can be extended to evaluate nonsurgically
hospitalized patients or individuals requiring nursing care. Daily
behavior patterns were encapsulated in an index expressed as
a numerical pair between 0 and 1, facilitating statistical
comparisons. This inclusivity can extend beyond daily changes
within the same patient for comparisons between different
patients and procedures.

With the ongoing development of the HAR technology, detailed
research on the behavior patterns of patients with more severe
conditions or more active patients is possible. Currently, the
sensors are equipped with more functions and are smaller than
those when this study was designed. The device can detect
differences of several centimeters in height based on barometric
pressure [44] and track movements using geomagnetic and
satellite data. We will be able to grasp the difference between
a patient’s sitting and standing positions more easily as well as
their speed and range of movement.

We hope that this study inspires medical professionals to
conduct medical research using machine learning and to apply
the proposed index, conception, and methodology.

Conclusions
To establish a quantitative measurement method for surgical
invasiveness, we focused on behavior patterns in operative
patients and proposed an index for the rate of postural time. The
index was created using a supervised machine learning method
based on the triaxial acceleration data of a patient before and
after surgery. The numerical indices clearly demonstrate the
difference between 2 patients with different levels of surgical
invasiveness on a graph and enable numerical comparisons. The
proposed index was created using parameters that do not depend
on the type of invasiveness, and we believe that it can be widely
applied beyond the evaluation of surgical invasiveness.
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