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Abstract

Background: Although machine learning models demonstrate significant potential in predicting postoperative delirium, the
advantages of their implementation in real-world settings remain unclear and require a comparison with conventional models in
practical applications.

Objective: The objective of this study was to validate the temporal generalizability of decision tree ensemble and sparse linear
regression models for predicting delirium after surgery compared with that of the traditional logistic regression model.

Methods: The health record data of patients hospitalized at an advanced emergency and critical care medical center in Kumamoto,
Japan, were collected electronically. We developed a decision tree ensemble model using extreme gradient boosting (XGBoost)
and a sparse linear regression model using least absolute shrinkage and selection operator (LASSO) regression. To evaluate the
predictive performance of the model, we used the area under the receiver operating characteristic curve (AUROC) and the
Matthews correlation coefficient (MCC) to measure discrimination and the slope and intercept of the regression between predicted
and observed probabilities to measure calibration. The Brier score was evaluated as an overall performance metric. We included
11,863 consecutive patients who underwent surgery with general anesthesia between December 2017 and February 2022. The
patients were divided into a derivation cohort before the COVID-19 pandemic and a validation cohort during the COVID-19
pandemic. Postoperative delirium was diagnosed according to the confusion assessment method.

Results: A total of 6497 patients (68.5, SD 14.4 years, women n=2627, 40.4%) were included in the derivation cohort, and
5366 patients (67.8, SD 14.6 years, women n=2105, 39.2%) were included in the validation cohort. Regarding discrimination,
the XGBoost model (AUROC 0.87-0.90 and MCC 0.34-0.44) did not significantly outperform the LASSO model (AUROC
0.86-0.89 and MCC 0.34-0.41). The logistic regression model (AUROC 0.84-0.88, MCC 0.33-0.40, slope 1.01-1.19, intercept
–0.16 to 0.06, and Brier score 0.06-0.07), with 8 predictors (age, intensive care unit, neurosurgery, emergency admission, anesthesia
time, BMI, blood loss during surgery, and use of an ambulance) achieved good predictive performance.
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Conclusions: The XGBoost model did not significantly outperform the LASSO model in predicting postoperative delirium.
Furthermore, a parsimonious logistic model with a few important predictors achieved comparable performance to machine learning
models in predicting postoperative delirium.

(JMIR Perioper Med 2023;6:e50895) doi: 10.2196/50895

KEYWORDS

postoperative delirium; prediction model; machine learning; temporal generalizability; electronic health record data

Introduction

Delirium occurs in a significant proportion of surgical patients,
ranging from 11% to 51% [1]. The risk of postoperative delirium
is particularly high among patients who receive general
anesthesia [1]. Furthermore, postoperative delirium can lead to
a prolonged hospital stay and eventually increase mortality
[2,3]. Therefore, it is crucial to accurately estimate the potential
risk of postoperative delirium in order to identify high-risk
patients prior to surgery.

Various tools have been developed thus far to predict
postoperative delirium [4-8]. However, the performance of these
risk prediction models is not necessarily sufficient, and it is
often difficult to collect the data required for some of the
predictors used in these models during routine clinical practice.
Moreover, study populations differed depending on the type
and timing (planned or emergent) of the surgery. In fact, a
previous systematic review and meta-analysis concluded that
existing models provide weak evidence and thus are not
recommended for clinical practice [5]. Recently, machine
learning models have garnered attention in the medical field for
their high performance in predicting adverse events [9-32].
Thus, machine learning techniques have been recognized as
promising tools for the prediction of postoperative delirium
[9-17].

Although data-driven models hold great promise for the future,
their implementation in real-world settings remains challenging
for several reasons. First, it takes time and effort to monitor
outliers and missing values in a large amount of data. Therefore,
the implementation of complex machine learning models that
rely on hundreds of predictors would be impractical in routine
clinical practice. Second, it remains unclear whether complex
machine learning models offer any additional value compared
to conventional tools in practical applications. Although machine
learning models can detect complex interactions and nonlinear
relationships between predictors and clinical outcomes, some
studies have indicated that these complex machine learning
models have limited external validity when compared to
traditional logistic regression models [33-35]. The “no free
lunch” theorem demonstrates that achieving unbiased models
that are highly accurate for all data may not be feasible [36].
Thus, it is still unclear whether a complicated model without
interpretability is truly superior to a specific model for a
particular problem.

The lack of external validity is a significant barrier to
implementing predictive models in clinical practice.
Additionally, the accuracy of risk prediction models can
deteriorate over time due to covariate shifts. For example, during

the COVID-19 pandemic, intensive care unit admission was
restricted to isolated patients with COVID-19 and care processes
were modified according to the measures to reduce the risk of
COVID-19 infection. Consequently, models that were developed
to predict postoperative delirium before the COVID-19
pandemic are likely to have had reduced predictive accuracy
during the pandemic. Assuming that these factors affect
predictive performance, complex machine learning models may
also not be useful to predict postoperative delirium in patients
hospitalized during the pandemic. Therefore, it would be worth
evaluating model performance by temporal validation before
and after the COVID-19 pandemic.

Thus, this study aimed to determine (1) whether a complex
decision tree ensemble model outperforms a sparse linear
regression model in predicting postoperative delirium, and (2)
whether machine learning prediction models using copious data
are superior to traditional regression models with prespecified
predictors. For this purpose, we electronically collected existing
data from patients who underwent surgery with general
anesthesia at a single hospital in Kumamoto, Japan. We
developed machine learning models and a traditional linear
regression model using data from a cohort of patients
hospitalized before the COVID-19 pandemic and compared
their performance in predicting postoperative delirium using
data in a cohort of patients hospitalized during the COVID-19
pandemic.

Methods

Study Design and Data Sources
We retrospectively reviewed clinical data obtained from patients
hospitalized at Saiseikai Kumamoto Hospital, which is
designated as an advanced emergency and critical care medical
center in Kumamoto City in the southern region of Japan. We
accessed, processed, and analyzed clinical data that had been
electronically stored within the hospital’s database. We
developed the prediction models in accordance with the
guidelines outlined in the Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or
Diagnosis statement [37] (Multimedia Appendix 1).

Ethics Approval
This study was approved by the institutional review board of
Saiseikai Kumamoto Hospital (approval number 1072). Owing
to the retrospective nature of the study and the use of
anonymized clinical data, the requirement for written informed
consent was waived. For patients who did not wish to participate
in this study, the opportunity to opt out was provided and
announced on the Saiseikai Kumamoto Hospital website. During
the analysis, patient data were deidentified, and only
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anonymized information was used. Participation in this study
was voluntary, and participants were not compensated for the
use of their information.

Study Patients
We obtained data for a total of 13,155 patients who were
admitted to the hospital between December 2017 and February
2022, underwent surgery with general anesthesia, and were

discharged before February 2022. Among these patients, we
excluded 1144 patients due to missing data on delirium
assessment, 8 patients who died within 24 hours of admission,
and 140 patients who were younger than 18 years. Finally, a
total of 11,863 patients were included in the analysis. A
subanalysis was conducted by restricting the patient population
to those who underwent emergent surgery (Figure 1).

Figure 1. Patient selection flowchart.

Clinical Outcomes
Delirium was diagnosed according to the confusion assessment
method (CAM) [38], which is the most widely used instrument
for diagnosing delirium [1]. We defined postoperative delirium
as the first positive result obtained during hospitalization after
surgery using the CAM. Each patient underwent daily
assessments using the CAM, starting from the day they were
transferred from the operating room to the postoperative care
unit. The assessments were conducted by nurses who received
training from a delirium assessment committee, which included
a psychiatrist.

Predictors
We collected data on predictors from electronic health record
databases, which were routinely accumulated during daily
patient care at the hospital. To develop prediction models for
patients undergoing surgery under general anesthesia, we used
25 variables that were collected on admission (eg, age, BMI,
sex, emergency admission, use of an ambulance, medication,
comorbidity, and previous history) as well as during the

preoperative (eg, admission ward, catheter, ventilator, physical
restraints, and circadian rhythm disorder) and intraoperative
(eg, surgery site, anesthesia time, and blood loss during surgery)
periods. All variables used for prediction are listed in
Multimedia Appendix 2. Additionally, to develop the prediction
models for patients who underwent emergent surgery under
general anesthesia, we used 30 additional variables, including
data derived from blood tests (eg, albumin, creatinine, glucose,
hemoglobin, and C-reactive protein levels) and vital sign
assessments (eg, systolic blood pressure, pulse rate, SpO2, and
Glasgow Coma Scale score) upon admission (Multimedia
Appendix 2).

Development of Predictive Models
The extreme gradient boosting (XGBoost) effectively captures
nonlinear relationships and interactions between predictors and
outcomes [39]. Based on these characteristics, previous studies
have reported that XGBoost exhibits a high level of accuracy
in predicting postoperative delirium [11-15]. Therefore, we used
XGBoost, which is a decision tree ensemble learning method,
as a complex machine learning model. Additionally, we also
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used the least absolute shrinkage and selection operator
(LASSO) regression, a sparse linear regression method [40].
LASSO regression serves as a variable selection technique by
eliminating regression coefficients of variables that do not
significantly contribute to the prediction. To create a machine
learning–referenced regression model, we further used logistic
regression with prespecified predictors that were identified as
the top 10 important variables in both the XGBoost and LASSO
models.

The data set contained missing values for several predictors
(Multimedia Appendix 2). While multiple imputations are
considered the gold standard for handling missing data, its
compatibility with decision-tree–based machine learning models
is not as straightforward as it is with regression models.
Therefore, we used the MissForest method, a type of
nonparametric single-imputation approach, for missing value
imputation [41]. This method uses other variables, including
the outcome, to predict the missing values of the predictor
variable using random forest. Since the rate of missing values
was at most 8.5%, we used all variables with missing values
after imputing them using MissForest. The derivation and the
validation cohorts were handled as completely independent data
sets, and missing values were imputed within each data set.
Additionally, for sensitivity analysis, we conducted a complete
case analysis to assess the impact of missing values on the
results. Further details regarding the programs used, along with
the GitHub URL, are outlined in Multimedia Appendix 3.

Generalizability Assessment
To verify the general applicability of the prediction model, we
performed temporal validation, which is a form of external
validation [42,43]. To explore the temporal generalizability, we
divided the patients into 2 cohorts based on whether they were
admitted to the hospital before or after the onset of the
COVID-19 pandemic in Japan. The derivation cohort consisted
of patients hospitalized between December 2017 and March
2020, while the validation cohort comprised patients hospitalized
between April 2020 and February 2022 (Figure 1).

We developed prediction models using the derivation cohort
and then validated the models using the temporal validation
cohort. When developing the predictive models in the derivation
cohort, the internal validity of the predictive models was
assessed using stratified 5-fold cross-validation. The
discrimination performance was evaluated based on sensitivity,
specificity, positive predictive value, negative predictive value,
and area under the receiver operating characteristic curve
(AUROC), while the calibration performance was assessed
using the calibration slope and intercept of the regression line
between the predicted and observed probabilities. The overall
performance of the models was measured using the Brier score.

Furthermore, the Matthews correlation coefficient (MCC) and
the area under the precision-recall curve (AUPRC) were
calculated to provide a fair assessment of binary classification
for biased data, such as cases with a small number of events.
The MCC takes values between –1 and +1, with a value of +1
indicating perfect agreement between the predicted and observed
values, –1 indicating perfect disagreement between the predicted

and observed values, and 0 indicating equivalent performance
to random prediction [44]. The MCC was defined as follows:

In the equation, TP stands for true positives, TN for true
negatives, FP for false positives, and FN for false negatives.
For each metric, the 95% CI was calculated using 2000 bootstrap
samples.

Contribution of Predictors to Predictive Performance
We calculated the Shapley additive explanations (SHAP) values
to assess the contribution of each predictor in the XGBoost
model. SHAP is a model-agnostic machine learning
interpretability method that provides a valuable tool for
visualizing the contribution of predictors using Shapley values.
These values, derived from cooperative game theory, ensure a
fair distribution of the contribution across predictors [45]. In
the LASSO regression model, we estimated the standardized
partial regression coefficients to assess the contribution of each
predictor. To evaluate the improvement in predictive
performance attributed to each predictor, we compared the
AUROC, calibration slope, and calibration intercept after
sequentially adding the predictors to the models. The predictive
metrics were calculated as each predictor was implemented in
the model in the order of its predictive contribution.

Statistical Analysis

To compare the baseline characteristics, we used the χ2 test or
Fisher exact test for categorical data, the t test for data assumed
to follow a normal distribution, and the Mann-Whitney U test
for continuous values when a normal distribution could not be
assumed. The Kolmogorov-Smirnov test was used to determine
whether the continuous variable data followed the normal
distribution. The t test was used to evaluate differences in age
and BMI between the 2 groups. The 2-sided probability values
less than .05 were considered statistically significant. All
statistical analyses were conducted using the R statistical
package (R Core Team) (Multimedia Appendix 3).

Results

Patient Characteristics
The derivation cohort consisted of 6497 patients with a mean
age of 68.5 (SD 14.4) years of which 2627 (40.4%) were
women. The validation cohort included 5366 patients with a
mean age of 67.8 (SD 14.6) years of which 2105 (39.2%) were
women. Postoperative delirium occurred in 592 (9.1%) patients
in the derivation cohort and in 427 (8%) patients in the
validation cohort. Delirium developed within 3 days after
surgery in 66% of patients, within a week after surgery in 84%
of patients, and within 2 weeks after surgery in 94% of patients.

Table 1 shows the differences in the baseline characteristics
between patients with and without postoperative delirium in
both the derivation and validation cohorts. In the derivation
cohort, all predictors significantly differed, except for central
venous port, dialysis catheter, and circadian rhythm disorder.
Similar results were observed in the validation cohort, although
the frequency of the dialysis catheter differed.
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Table 1. Differences in the baseline data according to the absence or presence of delirium after surgery.

P valueValidation cohortP valueDerivation cohort

Delirium
(n=427)

No delirium
(n=4939)

Delirium
(n=592)

No delirium
(n=5905)

Patient data

<.00178.0 (12.5)67.0 (14.5)<.00176.0 (12.7)67.8 (14.3)Age (years), mean (SD)

<.00121.3 (3.8)23.3 (4.0)<.00121.9 (3.8)23.2 (3.9)BMI (kg/m²), mean (SD)

.01193 (45.2)1912 (38.7).01269 (45.4)2358 (39.9)Women, n (%)

<.001299 (70.0)1474 (29.8)<.001398 (67.2)1814 (30.7)Emergency admission, n (%)

<.001252 (59.0)877 (17.8)<.001326 (55.1)1110 (18.8)Use of ambulance, n (%)

Medication, n (%)

.00214 (3.3)63 (1.3).0218 (3.2)93 (1.7)Benzodiazepines

<.00128 (6.6)40 (0.8)<.00129 (5.1)55 (1.0)Opioids

<.00117 (4.0)54 (1.1)<.00120 (3.5)62 (1.2)Steroids

<.001115 (26.9)176 (3.6)<.00188 (15.5)257 (4.8)Dementia, n (%)

<.00180 (18.7)383 (7.8)<.001118 (20.8)509 (9.5)Brain disease, n (%)

Previous history, n (%)

.00112 (2.8)45 (0.9).00912 (2.1)47 (0.9)Heavy drinking

<.00155 (12.9)94 (1.9)<.00132 (5.7)84 (1.6)Delirium

Preoperative data

<.001<.001Admission ward, n (%)

77 (18.0)1666 (33.7)123 (20.8)2085 (35.3)General ward (shared room)

131 (30.7)2660 (53.9)156 (26.4)2940 (49.8)General ward (private room)

219 (51.3)613 (12.4)313 (52.9)880 (14.9)Intensive care unit

Catheter, n (%)

<.001209 (48.9)1110 (22.5)<.001288 (48.6)1663 (28.2)Indwelling urinary catheter

<.001317 (74.2)2136 (43.2)<.001423 (71.5)2856 (48.4)Peripheral vein catheter

<.00177 (18.0)241 (4.9)<.00196 (16.2)322 (5.5)Central venous catheter

.493 (0.7)25 (0.5)>.994 (0.7)39 (0.7)Central venous port

<.00113 (3.0)36 (0.7).099 (1.5)45 (0.8)Dialysis catheter

<.00145 (10.5)81 (1.6)<.00147 (7.9)143 (2.4)Swan-Ganz catheter

<.001351 (82.2)3259 (66.0)<.001500 (84.5)4341 (73.5)Ventilator, n (%)

<.00140 (9.4)71 (1.4)<.00141 (6.9)124 (2.1)Physical restraints, n (%)

.314 (0.9)27 (0.5)>.992 (0.3)19 (0.3)Circadian rhythm disorder, n (%)

Surgical data

<.001<.001Surgery site, n (%)

4 (0.9)430 (8.7)7 (1.2)499 (8.5)Thoracic cavity and mediastinum

10 (2.3)264 (5.3)6 (1.0)294 (5.0)Chest wall, abdominal wall, and perineum

70 (16.4)1047 (21.2)112 (18.9)1421 (24.1)Upper abdominal viscera

107 (25.1)1315 (26.6)117 (19.8)1526 (25.8)Lower abdominal viscera

78 (18.3)1017 (20.6)83 (14.0)917 (15.5)Hip joints and extremities

43 (10.1)358 (7.2)114 (19.3)584 (9.9)Central nervous system

114 (26.7)480 (9.7)150 (25.3)603 (10.2)Heart and vascular

1 (0.2)28 (0.6)3 (0.5)61 (1.0)Other
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P valueValidation cohortP valueDerivation cohort

Delirium
(n=427)

No delirium
(n=4939)

Delirium
(n=592)

No delirium
(n=5905)

<.001206 (146-379)197 (136-305)<.001236 (156-403)209 (137-309)Anesthesia time, min, median (IQR)

<.00170 (10-600)20 (5-100)<.001120 (5-703)20 (5-150)Blood loss during surgery (mL), median (IQR)

Predictive Performance of Machine Learning Models
The performance of the prediction models developed using the
derivation cohort was first evaluated using stratified 5-fold
cross-validation. As a result, the AUROC values for the
XGBoost, LASSO, and logistic regression models were found
to be 0.85 (SD 0.02), 0.85 (SD 0.02), and 0.854 (SD 0.02),
respectively. Thereafter, we validated the performance using
the temporal validation cohort of patients hospitalized during
the COVID-19 pandemic. The predictive performance of the
machine learning models is shown in Table 2. In terms of
discrimination performance, the LASSO model showed
comparable results to the XGBoost model, with AUROC values
ranging 0.86-0.89 and 0.87-0.90, sensitivity of 0.80-0.90 and
0.77-0.91, specificity of 0.73-0.82 and 0.73-0.85, positive

predictive value of 0.22-0.28 and 0.22-0.31, and negative
predictive value of 0.98-0.99 and 0.98-0.99, respectively.
Similarly, MCC values and the AUPRC for the LASSO model
ranged from 0.34 to 0.41 and from 0.36 to 0.46, respectively,
while the XGBoost model showed values from 0.34 to 0.44 and
from 0.36 to 0.46, respectively. Regarding calibration, the
LASSO model exhibited good calibration with slope values
ranging from 0.98 to 1.14. On the other hand, the XGBoost
model displayed a more prominent slope greater than 1, ranging
from 1.13 to 1.32, indicating suboptimal calibration of the
decision tree ensemble model. Additionally, both the XGBoost
and LASSO models demonstrated comparable performance in
terms of Brier score, with values ranging from 0.05 to 0.06 for
both models.

Table 2. Temporal validation of predictive models for delirium after surgerya.

LRdLASSOcXGBoostb

Discriminability metrics

0.86 (0.84 to 0.88)0.88 (0.86 to 0.89)0.88 (0.87 to 0.90)AUROCe (95% CI)

0.84 (0.75 to 0.87)0.84 (0.80 to 0.90)0.88 (0.77 to 0.91)Sensitivity (95% CI)

0.75 (0.74 to 0.84)0.78 (0.73 to 0.82)0.74 (0.73 to 0.85)Specificity (95% CI)

0.23 (0.22 to 0.29)0.25 (0.22 to 0.28)0.23 (0.22 to 0.31)PPVf (95% CI)

0.98 (0.97 to 0.99)0.98 (0.98 to 0.99)0.99 (0.98 to 0.99)NPVg (95% CI)

Discriminability metrics for an imbalanced event

0.35 (0.33 to 0.40)0.38 (0.34 to 0.41)0.37 (0.34 to 0.44)MCCh (95% CI)

0.35 (0.31 to 0.40)0.41 (0.36 to 0.46)0.41 (0.36 to 0.46)AUPRCi (95% CI)

Calibration metrics

1.10 (1.01 to 1.19)1.06 (0.98 to 1.14)1.22 (1.13 to 1.32)Slope (95% CI)

–0.05 (–0.16 to 0.06)–0.26 (–0.38 to –0.15)–0.05 (–0.16 to 0.06)Intercept (95% CI)

Overall metric

0.06 (0.06 to 0.07)0.06 (0.05 to 0.06)0.06 (0.05 to 0.06)Brier score (95% CI)

aThe predictive models were developed on the training cohorts and validated on the test cohorts. A logistic regression model was developed using the
key predictors identified by the machine learning models: age, intensive care unit, neurosurgery, emergency admission, anesthesia time, BMI, blood
loss during surgery, and use of an ambulance. The values in parentheses represent 95% CIs after 2000 bootstrap samples.
bXGBoost: extreme gradient boosting.
cLASSO: least absolute shrinkage and selection operator.
dLR: logistic regression.
eAUROC: area under the receiver operating characteristic curve.
fPPV: positive predictive value.
gNPV: negative predictive value.
hMCC: Matthews correlation coefficient.
iAUPRC: area under the precision-recall curve.
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We also validated the predictive performance of the logistic
regression model using 8 key predictors—age, intensive care
unit, neurosurgery, emergency admission, anesthesia time, BMI,
blood loss during surgery, and use of an ambulance—that were
identified as important in both the LASSO and XGBoost models
(Table 2). The results showed that the logistic regression model
also exhibited excellent performance compared with the machine
learning models. Discriminability metrics (AUROC 0.84-0.88,
sensitivity 0.75-0.87, specificity 0.74-0.84, positive predictive
value 0.22-0.29, and negative predictive value 0.97-0.99),
discriminability metrics for an imbalanced event (MCC
0.33-0.40 and AUPRC 0.31-0.40), calibration metrics (slope

1.01-1.19 and intercept –0.16 to 0.06), and overall metric (Brier
score 0.06-0.07) were comparable to those of the machine
learning models.

Factors Contributing to Prediction
Figure 2 illustrates the variable importance of the top 10
predictors identified in both the LASSO and XGBoost models.
The ranking of variable importance was similar for each variable
in both models. However, some of the high-ranked variables in
the LASSO model, such as heart and vascular surgery and
central venous catheter, were not necessarily regarded as
important in the XGBoost model.

Figure 2. Variable importance for delirium after surgery in the machine learning models. The graph shows the variable importance of the top 10 ranked
predictors in the (A) LASSO and (B) XGBoost models. Variable importance was assessed based on the standardized regression coefficient (β) for the
LASSO model and the SHAP value for the XGBoost model and is depicted as the value relative to the highest value. Solid bars indicate the variables
that are ranked in the top 10 for both models. LASSO: least absolute shrinkage and selection operator; SHAP: Shapley additive explanations; XGBoost:
extreme gradient boosting.

Predictors and Predictive Performance
Figure 3 demonstrates the impact of including additional
predictors on discrimination and calibration. The AUROC did
not improve when low-ranked predictors were added to a set of
high-ranked predictors in both the LASSO and XGBoost models
(Figure 3A).

When calibration is perfect, the slope and the intercept of the
calibration plot should be 1 and 0, respectively. The slope in
the LASSO model approached 1, whereas the slope in the
XGBoost model did not reach 1 even with an increase in the
number of predictors (Figure 3B). On the other hand, the
intercept in the XGBoost model approached 0 as the number
of predictors increased, while it decreased below 0 in the
LASSO model (Figure 3C).
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Figure 3. Predictive performance for delirium after surgery of machine learning models and the traditional logistic regression model. The (A) AUROC,
(B) calibration slope, and (C) calibration intercept with the increase in the number of predictors are shown for the XGBoost model (closed circles) and
LASSO model (open circles) in comparison with those for the logistic regression model using prespecified predictors (open squares). The predictors
used in the logistic regression model were those ranked in the top 10 for both the XGBoost and LASSO models. The predictors used in each model are
as follows: Model 1: age; Model 2: model 1 + intensive care unit; Model 3: model 2 + neurosurgery; Model 4: model 3 + emergency admission; Model
5: model 4 + anesthesia time; Model 6: model 5 + BMI; Model 7: model 6 + blood loss during surgery; Model 8: model 7 + use of an ambulance; Full
model: all 25 variables. AUROC: area under the receiver operating characteristic curve; LASSO: least absolute shrinkage and selection operator; LR:
logistic regression; XGBoost: extreme gradient boosting.

Comparison Between Machine Learning Models and
the Logistic Regression Model
We further compared the predictive performance between the
machine learning models and the traditional logistic regression
model using prespecified predictors. For the logistic regression
model, we selected 8 predictors: age, intensive care unit,
neurosurgery, emergency admission, anesthesia time, BMI,
blood loss during surgery, and use of an ambulance. These
predictors were among the top 10 variables associated with
postoperative delirium identified by the XGBoost and LASSO
models. The logistic regression model, incorporating these 8
predictors, demonstrated sufficient discriminative ability
(AUROC 0.84-0.88 and MCC 0.33-0.40), which was
comparable to the machine learning models that used all
available data (Table 2, Figure 3A). Furthermore, logistic
regression with predictors selected based on the machine
learning models exhibited better calibration (slope 1.01-1.19
and intercept –0.16 to 0.06) than the XGBoost model (Table 2,
Figure 3B). In terms of overall performance (Brier score
0.06-0.07), the logistic regression model was comparable to the
machine learning models (Table 2).

Sensitivity Analysis
We conducted a sensitivity analysis by restricting the study
patients to those who underwent emergent surgery (Multimedia
Appendix 4). As a result, similar trends were confirmed in these
patients. The discriminative ability between the LASSO and
XGBoost models was comparable, whereas the XGBoost model
showed poor calibration (Multimedia Appendices 5 and 6).
Among the top 10 predictors identified by both the XGBoost
and LASSO models, 5 predictors (age, intensive care unit,
Glasgow Coma Scale score, anesthesia time, and blood loss
during surgery) were found in both models (Multimedia
Appendix 6). Consequently, the logistic regression model,
incorporating these 5 predictors, demonstrated comparable
discriminative ability to the machine learning models, while
exhibiting better calibration than the XGBoost model
(Multimedia Appendices 5 and 6).

Finally, we performed a complete case analysis and found that
the results were consistent with the main analysis. The
discriminative power among the XGBoost, LASSO, and the
logistic regression model was comparable, while the calibration
of the XGBoost model was inferior to that of the logistic
regression model (Multimedia Appendix 5).
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Discussion

Principal Results
The temporal generalizability analysis revealed that machine
learning exhibited a high discriminative ability in predicting
postoperative delirium in a real-world setting. However,
increasing the number of predictors did not considerably
improve the discriminative performance, even for the machine
learning models. The complex ensemble decision tree model
did not outperform the sparse linear regression model in terms
of discriminative power, and it exhibited poor calibration. In
contrast, the traditional logistic regression model with a limited
number of important predictors achieved sufficient
discriminatory ability in predicting postoperative delirium and
demonstrated better calibration than the complex ensemble
decision tree model. These findings suggest that a traditional
model with prespecified important predictors would be more
practical and useful in estimating the risk of postoperative
delirium compared to machine learning models.

Comparison With Prior Work
In this study, we validated the prediction models in terms of
temporal generalizability before and after the COVID-19
pandemic, as the health care system underwent significant
changes following the pandemic. The pandemic led to a decrease
in the number of hospital admissions and treatments for various
diseases [46,47].

Additionally, the use of hospital wards, particularly intensive
care units, was modified for COVID-19 prevention and control
measures. Therefore, we had concerns that the models,
especially complex models such as decision tree ensemble
models, would overfit the derivation cohort and thus not be
applicable to the validation cohort if many predictors were
included without a priori verification of the changes in the
predictors. Nevertheless, both the decision tree ensemble model
and sparse linear regression model exhibited high discriminative
power for predicting postoperative delirium. Therefore, machine
learning appears to be a useful technique only if we simply
categorize patients into high-risk and low-risk groups based on
the risk of delirium after surgery using comprehensive data.

In contrast, several studies have shown that machine learning
models do not necessarily outperform linear regression models
in terms of calibration and generalizability, suggesting that
linear regression models may be sufficient in low-dimensional
settings with large data sets [33-35]. Furthermore, recent
simulation studies on material science data sets have suggested
that simple linear regression models are preferable to complex
machine learning models, such as a random forest, in terms of
extrapolated predictive performance [48]. Our results are
consistent with this notion as the linear regression model using
only the key predictors accurately predicted postoperative
delirium in patients who underwent surgery under general
anesthesia. In real-world settings, it would be challenging to
manage a large number of predictors, incorporate them into
predictive models, and implement prediction systems for
postoperative delirium. Instead, it would be convenient if a
smaller number of key predictors could provide sufficient
accuracy in predicting delirium after surgery. Thus, the

implementation of a parsimonious linear regression model rather
than a complex machine learning model may be practical and
useful in predicting the risk of postoperative delirium.

Although the discriminative ability of the machine learning
models and the logistic regression model was comparable, the
traditional logistic regression model exhibited better calibration
performance than the XGBoost model. In daily clinical practice,
poorly calibrated risk estimates can lead to incorrect strategies
for safeguarding against postoperative delirium. In this respect,
the calibration of the predictive model is crucial for estimating
risk for each patient. Flexible models, such as boosted trees,
have been reported to be poorly calibrated, and their output
prediction probabilities are often corrected using sigmoid
functions or isotonic regression [49]. Nevertheless, such a
complex conversion process is cumbersome and not
cost-effective if prediction systems are implemented in clinical
practice.

The implementation of machine learning in real-world settings
has gained increasing attention in recent research. Machine
learning models have the potential to outperform linear
regression models in predicting clinical outcomes when there
are nonlinear relationships between the major predictors and
the outcomes or when strong interactions exist among the
predictors. In such complex scenarios, the predictive accuracy
of a flexible model, such as a decision tree ensemble, may
surpass that of a linear model. Furthermore, the decision tree
ensemble model can effectively handle high-dimensional data
without the issues of multicollinearity inherent in linear
regression models. Consequently, machine learning techniques
offer valuable tools for exploring and identifying important
predictors among numerous variables. The selection of
appropriate predictive models requires careful consideration of
their advantages and disadvantages. Further theoretical and
empirical studies are needed to ascertain the use of machine
learning models in predicting clinical outcomes in daily clinical
practice.

Limitations
This study had several limitations to be considered. First, some
variables contained missing values. Although imputation
techniques were used, the results may have been
affected—specifically, missing predictor values were imputed
using all available data in MissForest. Nevertheless, even when
the outcome was excluded in predicting missing values using
the imputation method, the results were essentially the same
(data not shown). Second, relying on a limited number of
predictors obtained during routine clinical work leaves the
possibility of unmeasured predictors influencing the outcomes.
Third, the analysis was conducted using data from a single
center in Japan, necessitating validation of the findings in other
settings. Finally, variations in health policies during the
COVID-19 pandemic across countries warranted confirmation
of the temporal validity in different contexts.

Conclusions
In recent years, the application of data-driven models to
electronic medical record data for outcome prediction has
garnered interest. However, the focus has primarily been on
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complex state-of-the-art machine learning models. In our study,
the decision tree ensemble model demonstrated a comparable
discriminatory ability to a sparse linear regression model in
predicting postoperative delirium using real-world data.
Additionally, a simple traditional logistic regression model

using known predictors outperformed the complex ensemble
decision tree model in terms of calibration. Therefore, a cautious
evaluation of the advantages and disadvantages of data-driven
models for postoperative delirium prediction is warranted.
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