JMIR Perioperative Medicine

Technologies for pre- and post-operative education, preventative interventions, and clinical care for surgery and anaesthesiology patients, as well as informatics applications in anesthesia, surgery, critical care, and pain medicine

Volume 7 (2024) ISSN: 2561-9128 Editor in Chief: John F Pearson, MD

Contents

Viewpoint

Blood Management: A Current Opportunity in Perioperative Medicine (e57012)
Moises Auron

2

Original Paper

Comparing Anesthesia and Surgery Controlled Time for Primary Total Knee and Hip Arthroplasty Between an Academic Medical Center and a Community Hospital: Retrospective Cohort Study (e45126)
Thy Nguyen, Nathaen Weitzel, Craig Hogan, Rachel Kacmar, Kayla Williamson, Jack Pattee, Vesna Jevtovic-Todorovic, Colby Simmons, Adeel Faruki

6
Blood Management: A Current Opportunity in Perioperative Medicine

Moises Auron1,2,3, MD

1Department of Hospital Medicine, Cleveland Clinic, Cleveland, OH, United States
2Department of Pediatric Hospital Medicine, Cleveland Clinic Children’s, Cleveland, OH, United States
3Outcomes Research Consortium, Cleveland, OH, United States

Corresponding Author:
Moises Auron, MD
Department of Hospital Medicine
Cleveland Clinic
9500 Euclid Ave
Cleveland, OH, 44195
United States
Phone: 1 2164458383
Fax: 1 2164448530
Email: auronm@ccf.org

Abstract

The purpose of this viewpoint is to provide awareness of the current opportunities to enhance a high-value care approach to blood product transfusion. It provides a historical context to the evolution of blood management, as well as of the patient safety and high-value care movement. Leveraging current technology for enhanced education, as well as clinical decision support, is also discussed.

Origins of High-Value Care

The need to improve patient outcomes, with emphasis on patient safety, evidence-based decision-making, and a strong focus on high-value care, stemmed from the US Institute of Medicine’s seminal publication To Err Is Human [1], which was very influential in enhancing awareness of the impact of individual human behavior and decision-making on patients’ outcomes. It was a humbling and necessary perspective that spearheaded a movement toward more effective, efficient, cost-effective, and high-value–oriented practice of medicine.

Historical Perspective on Blood Management

Blood management is not an exception to this movement. Transfusional medicine underwent tremendous development during the second half of the 20th century, faced with specific challenges such as the need for bloodless surgery in patients who refused blood transfusions and the rise of transfusion-associated viral diseases [2]. In addition, there was growing evidence of the adverse consequences associated with liberal blood transfusion, including increased mortality, sepsis, and increased length of hospitalization. This led to an awareness of the need to focus efforts on developing blood product transfusion based on the individual need of the patient, and in 2005, Isbister [3] coined the term “patient blood management.” This is a complex approach that focuses on three pillars: (1) optimizing patient hematopoiesis and enhancing red cell mass, (2) minimizing blood losses with improved source control and optimization of coagulopathy, and (3) enhancing patient tolerance to anemia [2]. In the past 30 years, substantial evidence grew to support a more restrictive transfusional approach once there was evidence that patients could tolerate lower hemoglobin values without major adverse effects; this evidence came from multiple patient populations, such as critically ill patients, older patients with high cardiovascular risk undergoing surgery, and patients with active gastrointestinal bleeding [4]. Another very important aspect that must be considered is the increasing cost associated with transfusion of blood products. Furthermore, procedures aimed to enhance patient safety (eg, pathogen reduction in platelets) substantially increase the overall cost of transfusion. A high-value care approach helps to gain insight
into nontransfusional alternatives to optimize underlying hematologic conditions, but also to be cost conscious and aware of the financial impact of indiscriminate use of blood [5,6].

Aim

The aim of this viewpoint is to allow physicians and clinicians caring for surgical patients who order blood products to reflect on the impact of the high-value care movement in blood management and transfusional medicine, as well as on the currently prevailing opportunities to enhance better decision-making; this is particularly relevant after considering the historical perspective. Ideally, the best scenario would be that patients undergo procedures and hospitalizations with minimal exposure to blood products, aiming to leverage nontransfusional correction of underlying hematologic processes. This requires enhanced awareness of current guidelines and standards of care, as well as leveraging current technology (eg, electronic health records) to help gain insight into current transfusion practices and to provide direct clinical decision-support tools that facilitate best practices in blood product ordering.

There is strong evidence of the increasing complexity of hospitalized and surgical patients [7]. It can be hypothesized that this complexity is also associated with anemia and coagulopathy as increasingly encountered comorbid conditions, especially in surgical patients. The physicians and health care professionals caring for these patients must have enhanced awareness to identify and recognize anemia and coagulopathy, with a subsequent diagnostic approach aiming to not just treat but to identify its etiology to optimize a nontransfusional approach (eg, the use of intravenous iron) [8]. A pharmacologic approach to anemia provides a more efficient and patient-centered optimization of these comorbidities with consequent enhanced treatment effectiveness and decreased adverse outcomes associated with unnecessary blood transfusion [4].

Current Challenges

The current 2023 Association for the Advancement of Blood & Biotherapies (AABB) red blood cell transfusion guidelines have reinforced this parsimonious approach to blood transfusion, with even more conservative and restrictive levels to trigger transfusion in patients with acute coronary syndromes and pediatric patients [9]. Nonetheless, more widespread enhanced adherence to the AABB guidelines in regard to red blood cell transfusion is a necessity. In addition, plasma transfusion offers a strong opportunity for improvement in health care delivery, especially as there is a need to minimize unnecessary plasma transfusion as well as its inappropriate dosing; plasma should be transfused with weight-based dosing and in appropriate clinical scenarios. Undertransfusion of plasma, by not using weight-based dosing, is a current challenge as this not only does not have a therapeutic corrective effect on coagulopathy but is a source of wastage [10]. Enhanced education efforts worldwide, as well as leverage of current technology, create awareness and encourage adoption of a high-value approach to plasma and red blood cell transfusion. Another element to consider as a balancing measure to enhanced patient safety is the increased associated cost; in the case of platelet transfusion, in the United States the current standard of care is the use of pathogen-reduced platelets; this approach increases costs of individual blood products substantially [6].

The perioperative continuum of care provides different stages to ensure that patients are properly evaluated and treated. In the preoperative setting, the optimization of anemia carries the most significant value through raising hemoglobin values to levels high enough to minimize reaching the transfusion threshold while also enhancing overall oxygen delivery [4]. In the intraoperative setting, the leverage of cell-saver technology, as well as optimization of coagulopathy, can mitigate the risk of blood product use; however, awareness of appropriate indications as well as of dosing of blood products promotes a high-value approach and minimizes wastage [9,10]. In the postoperative realm, it involves ensuring appropriate monitoring of ongoing blood losses, as well as monitoring the patient for potential complications associated with postsurgical anemia, such as myocardial ischemia in noncardiac surgery [11].

Potential Solutions and Opportunities

What can be done to mitigate the inappropriate overuse of blood products, inappropriate dosing, and lack of awareness of the associated costs? Appropriate data bank analysis and data-driven interventions, as well as the implementation of human factors engineering and newer technologies such as artificial intelligence within the current workflow (like the electronic health record), can enhance the effectiveness of patient blood management efforts [12]. This entails having a database of all patients being transfused in a hospital or health care system and being able to have granularity to drill down to data on the individual patient, ordering physician, and baseline and posttransfusion laboratory values (eg, complete blood count), as well as associated outcome metrics like readmissions, length of stay, and cost of care. In addition, short-cycle data, which allow immediate identification of patients who can benefit from further stratification and assessment of underlying anemia and coagulopathy, permits guiding clinicians to pursue real-time high-value care and evidence-based interventions supported by clinical decision support tools. Also, data governance of anemia and coagulopathy assessment, as well as blood transfusion practices, provides a platform for permit auditing, benchmarking best practices, and providing real-time feedback to individual physicians, increasing awareness of areas of success and opportunities [13].

The electronic health record also provides a strong platform for education, as clinical decision-support tools can be embedded in the orders [14]. For instance, in our institution, we default red blood cell transfusion orders to single units and have a formal indication: What is the current transfusion threshold? This allows the ordering health care professional to reflect and select a reason when the order does not follow the current AABB guidelines. Also, when plasma is ordered, there is an indication to use weight-based volumes to minimize undertransfusion, as well as education that transfusion for an international normalized ratio <1.8 will not have a meaningful impact. Order overriding...
can occur, but with the need to provide a rationale. The more
the orders are used and experience increases with blood product
transfusion, the more exposure there will be to this workflow,
allowing for enhanced education. Also, the electronic health
record can facilitate improved documentation of blood product
transfusions, allowing the development of increased insight into
potential blood product overuse [15].

In this issue of *JMIR Perioperative Medicine*, we provide the
opportunity to outline the evidence for evaluation and
optimization of perioperative anemia in different surgical
populations, as well as to discuss the opportunities for leverage
of current technologies to enhance the effectiveness of
approaches to improve patient outcomes and enhance the
high-value care approach, minimizing not only financial costs,
but more importantly, decreasing patient harm.

Conflicts of Interest

MA is an associate editor of *JMIR Perioperative Medicine*.

References

1. Institute of Medicine (US) Committee on Quality of Health Care in America. In: Kohn LT, Corrigan JM, Donaldson MS,
[Medline: 31246561]
3. Isbister J. Why should health professionals be concerned about blood management and blood conservation? Updates in
4. Auron M, Duran Castillo MY, Kumar A. Parsimonious blood use and lower transfusion triggers: What is the evidence?
10.1002/ajh.26940] [Medline: 37096559]
to reduce bacterial contamination of platelet transfusions. Transfusion 2019 Apr;59(4):1291-1299 [FREE full text] [doi:
10.1111/trf.15139] [Medline: 30623459]
Oct;3:-37 [FREE full text] [doi: 10.21037/jxym.2018.09.05]
10. Drake R, Jackson B, Murphy C. Single plasma unit transfusions in adults are either unnecessary or underdosed. Am J Clin
full text] [doi: 10.1016/j.bja.2020.08.056] [Medline: 33039122]
Ann Blood 2024 Mar;9:-7 [FREE full text] [doi: 10.21037/aob-22-45]

Abbreviations

AABB: Association for the Advancement of Blood & Biotherapies
Comparing Anesthesia and Surgery Controlled Time for Primary Total Knee and Hip Arthroplasty Between an Academic Medical Center and a Community Hospital: Retrospective Cohort Study

Thy B Nguyen¹, BA; Nathaen Weitzel², MD; Craig Hogan³, MD; Rachel M Kacmar², MD; Kayla M Williamson⁴, MS; Jack Pattee⁴, PhD; Vesna Jevtovic-Todorovic², MD, MBA, PhD; Colby G Simmons², DO, MBA; Adeel Ahmad Faruki²,5, MD, MBA

¹University of Colorado School of Medicine, Aurora, CO, United States
²Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
³Department of Orthopaedic Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
⁴Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado - Anschutz Medical Campus, Aurora, CO, United States
⁵Department of Anesthesiology and Perioperative Medicine, MD Anderson Cancer Center, Houston, TX, United States

Corresponding Author:
Adeel Ahmad Faruki, MD, MBA
Department of Anesthesiology and Perioperative Medicine
MD Anderson Cancer Center
Faculty Center, Floor 13, FC13.2000
1400 Holcombe Blvd, Unit 409
Houston, TX
United States
Phone: 1 713 792 6911
Email: aafaruki@mdanderson.org

Abstract

Background: Osteoarthritis is a significant cause of disability, resulting in increased joint replacement surgeries and health care costs. Establishing benchmarks that more accurately predict surgical duration could help to decrease costs, maximize efficiency, and improve patient experience. We compared the anesthesia-controlled time (ACT) and surgery-controlled time (SCT) of primary total knee (TKA) and total hip arthroplasties (THA) between an academic medical center (AMC) and a community hospital (CH) for 2 orthopedic surgeons.

Objective: This study aims to validate and compare benchmarking times for ACT and SCT in a single patient population at both an AMC and a CH.

Methods: This retrospective 2-center observational cohort study was conducted at the University of Colorado Hospital (AMC) and UCHealth Broomfield Hospital (CH). Cases with current procedural terminology codes for THA and TKA between January 1, 2019, and December 31, 2020, were assessed. Cases with missing data were excluded. The primary outcomes were ACT and SCT. Primary outcomes were tested for association with covariates of interest. The primary covariate of interest was the location of the procedure (CH vs AMC); secondary covariates of interest included the American Society of Anesthesiologists (ASA) classification and anesthetic type. Linear regression models were used to assess the relationships.

Results: Two surgeons performed 1256 cases at the AMC and CH. A total of 10 THA cases and 12 TKA cases were excluded due to missing data. After controlling for surgeon, the ACT was greater at the AMC for THA by 3.77 minutes and for TKA by 3.58 minutes (P<.001). SCT was greater at the AMC for THA by 11.14 minutes and for TKA by 14.04 minutes (P<.001). ASA III/IV classification increased ACT for THA by 3.76 minutes (P<.001) and increased SCT for THA by 6.33 minutes after controlling for surgeon and location (P=.008). General anesthesia use was higher at the AMC for both THA (29.2% vs 7.3%) and TKA (23.8% vs 4.2%). No statistically significant association was observed between either ACT or SCT and anesthetic type (neuraxial or general) after adjusting for surgeon and location (all P>.05).

Conclusions: We observed lower ACT and SCT at the CH for both TKA and THA after controlling for the surgeon of record and ASA classification. These findings underscore the efficiency advantages of performing primary joint replacements at the...
CH, showcasing an average reduction of 16 minutes in SCT and 4 minutes in ACT per case. Overall, establishing more accurate benchmarks to improve the prediction of surgical duration for THA and TKA in different perioperative environments can increase the reliability of surgical duration predictions and optimize scheduling. Future studies with study populations at multiple community hospitals and academic medical centers are needed before extrapolating these findings.

(JMIR Perioper Med 2024;7:e45126) doi:10.2196/45126

KEYWORDS

anesthesia controlled time; surgery-controlled time; total joint arthroplasty; healthcare operations; efficiency; total joint replacement; knee; hip; arthroplasty; anesthesia; surgery; surgical duration; community hospital; surgeon; reliability; operating room; anesthesiology; orthopedics; perioperative; medicine

Introduction

Hip and knee osteoarthritis (OA) are pervasive causes of disability and pain globally, and the burden of OA is expected to increase due to population aging and the rising prevalence of obesity [1]. Total knee arthroplasty (TKA) and total hip arthroplasty (THA) are 2 of the most common and well-accepted surgical interventions to improve quality of life for patients with end-stage joint deterioration [2]. Therefore, a considerable increase has been projected for TKA and THA cases (673% and 174%, respectively) from 2005 to 2030 in the United States [3]. The anticipated demand for joint replacements combined with the importance of the operating room (OR) in hospital revenue and margins emphasizes the importance of identifying factors that decrease cost and maximize efficiency in the OR [4,5]. One such process is establishing benchmarks that are accurate predictors of surgical duration in order to improve hospital operations, optimize OR schedule modeling and management, reduce health care costs, and improve patient satisfaction and experience.

Prior efforts have been made to assess OR efficiency using mean anesthesia-controlled time (ACT) and surgery-controlled time (SCT) values [6]. ACT is defined as the sum of the time starting when the patient enters the OR until the patient is ready for surgical positioning, added to the time starting when the incision is closed and ending when the patient leaves the OR [7]. SCT is defined as the time from when the patient is ready for positioning to when the surgical sites are closed. Studies examining SCT for TKA found that computer-based estimations of historical performance were a better predictor of actual SCT than the estimates provided by surgeons, while assessments of heterogeneity of ACT and SCT based on current procedural terminology (CPT) codes have also highlighted the need for more granular prediction models [8,9]. Moreover, ACT and SCT at academic institutions may be increased because of teaching responsibilities for anesthesia and surgery trainees and may not reflect mean ACT and SCT for the same procedures in other settings. Furthermore, a spectrum of clinical and nonclinical factors could contribute to significant variation in case duration between surgeons [10,11]. This study will compare the ACT and SCT of THA and TKA between an academic medical center (AMC) and a community hospital (CH) for 2 orthopedic surgeons.

We hypothesize that after adjusting for surgeon, the ACT and SCT between an AMC and a CH will have a statistically significant difference for both knee and hip procedures.

Methods

Design

This retrospective 2-center observational cohort study was conducted at an AMC—the University of Colorado Hospital—and a university-affiliated CH—UCHealth Broomfield Hospital. Prior to the COVID-19 pandemic, hip and knee replacement surgeries were primarily performed at the AMC. However, during the pandemic, these surgeries were relocated to the CH from March 2020 through August 2020 and again in November 2020. Both orthopedic surgeons work with the same team of orthopedic physician assistants and trainees (residents and fellows) at both locations. The University of Colorado Department of Anesthesiology staffs both the AMC and CH with an anesthesia care-team model consisting of supervising attending physicians and anesthesia providers such as certified registered nurse anesthetists, anesthesiology assistants (AAs), or anesthesiology resident physicians-in-training. The academic center also has student AAs who often work alongside certified registered nurse anesthetists and AAs. The CH does not have anesthesiology residents or student AAs present for any procedure. The practice for anesthesiology at both locations includes primarily performing neuraxial anesthesia on both TKA and THA if patients are appropriate and amenable to this type of anesthetic. For TKA, single-shot adductor canal blocks were performed in the preoperative area before the patient was brought to the OR. In the OR, the neuraxial anesthetic or a general anesthetic was performed.

Eligibility Criteria

Inclusion criteria for the study included participants undergoing primary THA and TKA. These cases were performed by 2 fellowship-trained adult reconstructive orthopedic joint surgeons who operated at both the AMC and CH. The time frame for cases performed was from January 1, 2019, to December 31, 2020. Inclusion criteria included being aged older than 18 years and the procedure type was determined based on CPT codes billed for the case. Only CPT codes 27130 (THA) and 27447 (TKA) were assessed in this study. Exclusion criteria included cases with missing data required to calculate ACT and SCT.

Data Collection and Storage

Demographic data and time stamps for each case were collected from electronic medical records and stored securely on the AMC’s cloud drive.

https://periop.jmir.org/2024/1/e45126
ACT and SCT Calculation

The time stamps for In Room Time, Ready for Positioning and Prep Time, Incision Time, Close Time, and Out of Room Time were collected for each case. Ready for Positioning is defined as the point when the anesthesia team has completed their activities, signifying that the patient was prepared for surgical positioning. Ready for Positioning and Prep Time indicated that all presurgical anesthesia-related activities were completed and the surgical team could begin positioning the patient and performing surgical preparation. ACT was calculated based on \((\text{Ready for Positioning and Prep Time} - \text{In Room Time}) + (\text{Out of Room Time} - \text{Close Time}) \). SCT was calculated based on \((\text{Close Time} - \text{Ready for Positioning and Prep Time}) \).

Statistical Analysis

Descriptive statistics were performed using means and SDs for continuous variables, whereas counts and percentages were used for categorical variables. The primary outcome was the duration of ACT and SCT. Several independent variables were investigated for association with ACT and SCT in TKA and THA procedures. These independent variables include the location (AMC vs CH), surgeon identity (1 of 2 surgeons), American Society of Anesthesiologists (ASA) classification (dichotomized into ASA class I/II, representing mild to moderate systemic disease, vs ASA class III/IV, representing severe systemic disease), and anesthesia type (general vs neuraxial). Several multiple regressions were fit to assess relevant associations. The first tested association describes 4 multivariable linear regressions; for each outcome (ACT or SCT), separate multivariable linear regressions were fit for each surgery type (TKA or THA). Location and surgeon identity were included as independent variables. The second tested association is of 4 separate multivariable regressions; however, the set of modeled independent variables changes including location, surgeon identity, and ASA classification as covariates. The third tested association is of 4 separate multivariable regressions using location, surgeon identity, and anesthetic type as covariates.

Associations were considered statistically significant if the \(P \) values were less than \(\alpha \) at the .05 level. \(R^2 \) and adjusted \(R^2 \) are reported for multivariable regressions. \(R^2 \) characterizes the proportion of variability in the outcome explained by model covariates, thus providing an estimate of the predictive utility of the model. Adjusted \(R^2 \) likewise estimates the model’s predictive usefulness, with a correction for the number of independent variables. R (version 4.0.4; R Core Team) was used for all analyses.

Ethical Considerations

The study was reviewed by the University of Colorado Denver Institutional Review Board and the study was approved for exempt status (Colorado Multiple Institutional Review Board Protocol 20-2987), as it involved an observational retrospective analysis of existing medical records and therefore did not require additional interventions or the collection of new data from human research participants. Given the exempt status of the study, the written consent requirements of participants were waived for this Colorado Multiple Institutional Review Board Protocol. The original informed consent for the primary data collection allowed for secondary analyses without additional consent, as approved by the institutional review board. This study was designed and executed following the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines for cohort studies (Multimedia Appendix 1). To ensure the confidentiality and privacy of human research participant data, all patient records used in this study were deidentified prior to analysis. As there were no interactions or additional interventions with the participants, compensation was not applicable, and therefore not provided.

Results

There were 1256 observations for the 2 surgeons at the AMC and CH from January 1, 2019, to December 31, 2020. There were 619 THA observations and 637 TKA observations. A total of 10 (1.6%) out of 619 THA cases and 12 (1.8%) out of 637 TKA cases had missing values and were excluded from the analyses (Figure 1). One TKA case was missing ASA classifications and was omitted for regression controlling for this variable. The data set included 21 bilateral procedures at the AMC and 3 bilateral procedures at the CH. Secondary CPT codes were documented for a total of 5 cases including 1 cystoscopy, 1 tendon repair, 2 arteriograms, and 1 total hip liner exchange. All of the cases with secondary CPT codes documented occurred at the AMC.
There were no significant differences between the AMC and CH patient groups for age, sex, and ASA classification (all $P > 0.05$: Table 1). For THA, 29.2% (130/445) of the cases performed at the AMC used general anesthesia, while 7.3% (12/164) of the cases performed at the CH used general anesthesia, despite no statistically significant difference in ASA classification. Results were similar for TKA, as 23.8% (109/457) of the cases performed at the AMC used general anesthesia, while 4.2% (7/168) of the cases performed at the CH used general anesthesia, despite no statistically significant difference in ASA classification. The observed average SCT was 14.61 minutes longer for surgeon 1 and 9.31 minutes longer for surgeon 2 at the AMC in comparison to the CH for THA procedures. Furthermore, the observed average SCT was 18.01 minutes longer for surgeon 1 and 14.37 minutes longer for surgeon 2 at the AMC in comparison to the CH for TKA procedures (Table 2). The values for ACT also consistently showed increased time at the AMC for both THA and TKA cases for both surgeons (Table 2).
Table 1. Patient demographics and case characteristics.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Cases performed at AMC<sup>b</sup> (n=902)</th>
<th>Cases performed at CH<sup>b</sup> (n=332)</th>
<th>P value<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient demographics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years), mean (SD)</td>
<td>63.1 (12.5)</td>
<td>63.5 (10.4)</td>
<td>.59</td>
</tr>
<tr>
<td>Female sex, n (%)</td>
<td>n (59.1)</td>
<td>n (60.5)</td>
<td>.70</td>
</tr>
<tr>
<td>Procedure and its ASA<sup>d</sup> classification, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THA<sup>e</sup> (AMC: n=445; CH: n=164)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/II</td>
<td>266 (59.8)</td>
<td>110 (67.1)</td>
<td>.12</td>
</tr>
<tr>
<td>III/IV</td>
<td>179 (40.2)</td>
<td>54 (32.9)</td>
<td>N/A<sup>f</sup></td>
</tr>
<tr>
<td>TKA<sup>g</sup> (AMC: n=457; CH: n=168)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/II</td>
<td>261 (57.1)</td>
<td>107 (63.7)</td>
<td>.17</td>
</tr>
<tr>
<td>III/IV</td>
<td>195 (42.7)</td>
<td>61 (36.3)</td>
<td>N/A</td>
</tr>
<tr>
<td>Procedure and its anesthetic classification, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THA (AMC: n=445; CH: n=164)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General anesthesia</td>
<td>130 (29.2)</td>
<td>12 (7.3)</td>
<td><.001</td>
</tr>
<tr>
<td>Neuraxial anesthesia</td>
<td>315 (70.8)</td>
<td>152 (92.7)</td>
<td>N/A</td>
</tr>
<tr>
<td>TKA (AMC: n=457; CH: n=168)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General anesthesia</td>
<td>109 (23.8)</td>
<td>7 (4.2)</td>
<td><.001</td>
</tr>
<tr>
<td>Neuraxial anesthesia</td>
<td>348 (76.2)</td>
<td>161 (95.8)</td>
<td>N/A</td>
</tr>
<tr>
<td>Missing documentation</td>
<td>1 (0.2)</td>
<td>0 (0)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

^aAMC: academic medical center.
^bCH: community hospital.
^cP values correspond to a hypothesis test for the association of the study variable with surgical location. Continuous variables are assessed via 2-tailed t test and dichotomous variables via a difference of proportions test.
^dASA: American Society of Anesthesiologists.
^eTHA: total hip arthroplasty.
^fN/A: not applicable.
^gTKA: total knee arthroplasty.

Table 2. Comparison of the mean (SD) ACT^a and SCT^b for total hip arthroplasty and total knee arthroplasty between surgeons and between operative settings.

<table>
<thead>
<tr>
<th>Outcome and variable</th>
<th>Total hip arthroplasty</th>
<th>Total knee arthroplasty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AMC<sup>c</sup>, mean (SD)</td>
<td>CH<sup>d</sup>, mean (SD)</td>
</tr>
<tr>
<td>ACT (min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgeon 1</td>
<td>27.03 (12.97)</td>
<td>24.07 (8.01)</td>
</tr>
<tr>
<td>Surgeon 2</td>
<td>25.18 (10.69)</td>
<td>20.98 (8.67)</td>
</tr>
<tr>
<td>SCT (min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgeon 1</td>
<td>116.46 (27.03)</td>
<td>101.85 (25.08)</td>
</tr>
<tr>
<td>Surgeon 2</td>
<td>111.96 (31.7)</td>
<td>102.61 (23.03)</td>
</tr>
</tbody>
</table>

^aACT: anesthesia-controlled time.
^bSCT: surgery-controlled time.
^cAMC: academic medical center.
^dCH: community hospital.

Location and surgeon identity were included as independent variables. After adjusting for surgeon, the mean ACT for THA at the AMC was 3.77 (95% CI 1.83-5.71) minutes longer than for the CH and 3.58 (95% CI 1.91-5.26) minutes longer for TKA (both P<.001; Table 3). After adjusting for surgeon, the mean SCT at the AMC was 11.14 (95% CI 6.02-16.26) minutes longer...
longer for THA and 14.04 (95% CI 8.43-19.65) minutes longer for TKA (both P<.001; Table 3) in comparison to the CH. Having a moderate to severe systemic disease (ASA class III/IV) increased the ACT by 3.76 (95% CI 2.00-5.51; P<.001) minutes and SCT by 6.33 (95% CI 1.66-10.99; P=.008) minutes for THA after adjusting for location and surgeon (Table 4). Having an ASA classification of III/IV did not significantly increase the ACT time for TKA (P=.08; Table 4). There was no significant difference noted for ACT and SCT between neuraxial anesthesia and general anesthesia (all P>0.05; Table 5). For all models, the adjusted R^2 was less than 10%, indicating that a significant amount of the variation in ACT and SCT is not explained by hospital, surgeon, ASA classification, or anesthetic used.

Table 3. Multivariable linear regression coefficients for the association of ACTa and SCTb with hospital and surgeon.

<table>
<thead>
<tr>
<th>Outcome and variable</th>
<th>Total hip arthroplastyc</th>
<th>Total knee arthroplastyd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimates (min) 95% CI</td>
<td>P value Estimates (min) 95% CI P value</td>
</tr>
<tr>
<td>ACT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coefficient intercept</td>
<td>23.47 21.42 to 25.51</td>
<td><.001 21.03 19.47 to 22.58 <.001</td>
</tr>
<tr>
<td>AMCe</td>
<td>3.77 1.83 to 5.71</td>
<td><.001 3.58 1.91 to 5.26 <.001</td>
</tr>
<tr>
<td>Surgeon 1</td>
<td>−2.18 −3.98 to −0.38</td>
<td>.02 −1.57 −3.06 to −0.08 .04</td>
</tr>
<tr>
<td>SCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coefficient intercept</td>
<td>104.43 99.04 to 109.83</td>
<td><.001 102.50 97.29 to 107.71 <.001</td>
</tr>
<tr>
<td>AMCf</td>
<td>11.14 6.02 to 16.26</td>
<td><.001 14.04 8.43 to 19.65 <.001</td>
</tr>
<tr>
<td>Surgeon 1</td>
<td>−3.12 −7.87 to 1.63</td>
<td>.20 −10.34 −15.33 to −5.35 <.001</td>
</tr>
</tbody>
</table>

aACT: anesthesia-controlled time.
bSCT: surgery-controlled time.
cACT for total hip arthroplasty had 609 observations and an R^2/R^2_{adj} adjusted value of 0.033/0.030; and total knee arthroplasty had 625 observations and an R^2/R^2_{adj} adjusted value of 0.037/0.029.
dSCT for total hip arthroplasty had 609 observations and an R^2/R^2_{adj} adjusted value of 0.032/0.029; and total knee arthroplasty had 624 observations and an R^2/R^2_{adj} adjusted value of 0.058/0.055.
eAMC: academic medical center.

Table 4. Multivariable linear regression coefficients for the association of ACTa and SCTb with ASAc, hospital, and surgeon.

<table>
<thead>
<tr>
<th>Outcome and variable</th>
<th>Total hip arthroplastyd</th>
<th>Total knee arthroplastye</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimates (min) 95% CI</td>
<td>P value Estimates (min) 95% CI P value</td>
</tr>
<tr>
<td>ACT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coefficient intercept</td>
<td>22.13 20.02 to 24.24</td>
<td><.001 20.53 18.87 to 22.18 <.001</td>
</tr>
<tr>
<td>ASA class III/IV</td>
<td>3.76 2.00 to 5.51</td>
<td><.001 1.33 −0.18 to 2.84 .08</td>
</tr>
<tr>
<td>AMCf</td>
<td>3.50 1.58 to 5.42</td>
<td><.001 3.50 1.82 to 5.18 <.001</td>
</tr>
<tr>
<td>Surgeon 1</td>
<td>−2.03 −3.81 to −0.25</td>
<td>.03 −1.53 −3.02 to −0.03 .045</td>
</tr>
<tr>
<td>SCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coefficient intercept</td>
<td>102.18 96.56 to 107.80</td>
<td><.001 101.56 96.02 to 107.11 <.001</td>
</tr>
<tr>
<td>ASA class III/IV</td>
<td>6.33 1.66 to 10.99</td>
<td>.008 2.61 −2.46 to 7.67 .31</td>
</tr>
<tr>
<td>AMCf</td>
<td>10.69 5.58 to 15.79</td>
<td><.001 13.82 8.19 to 19.44 <.001</td>
</tr>
<tr>
<td>Surgeon 1</td>
<td>−2.87 −7.60 to 1.86</td>
<td>.23 −10.36 −15.36 to −5.36 <.001</td>
</tr>
</tbody>
</table>

aACT: anesthesia-controlled time.
bSCT: surgery-controlled time.
cASA: American Society of Anesthesiologists.
dACT for total hip arthroplasty had 609 observations and an R^2/R^2_{adj} adjusted value of 0.061/0.056; and total knee arthroplasty had 624 observations and an R^2/R^2_{adj} adjusted value of 0.037/0.003.
eSCT for total hip arthroplasty had 609 observations and an R^2/R^2_{adj} adjusted value of 0.043/0.039; and total knee arthroplasty had 624 observations and an R^2/R^2_{adj} adjusted value of 0.060/0.055.
fAMC: academic medical center.
that operative time significantly increases when procedures are
scheduled after the usual surgical block or relieving staff in the OR earlier to
allowing for the scheduling of another short case during a
4 cases can result in an extra hour of operating time per day,
clinically significant implications, as a 16-minute difference in
TKA procedures compared with the CH. Our results may have
The mean SCT was greater at the academic center for THA and
while maintaining operational efficiency is crucial.
our study therefore aimed to
refine the prediction of surgical case duration for THA and TKA
between an academic center and a CH for the same orthopedic
surgeons. Our results showed that both SCT and ACT were
statistically significantly longer for primary hip and knee
arthroplasty at the AMC compared with the CH. The mean ACT
was higher at the AMC by less than 4 minutes for THA and
was higher at the AMC by less than 4 minutes for THA and
neuraxial anesthesia. The current literature offers mixed results
surgical centers when comparing general anesthesia versus
neuraxial anesthesia. The current literature offers mixed results
performing with surgical resident or surgical fellow participation
[15,16]. The R^2 values in our results (<10%, Tables 3-5) also indicate the existence of other covariates that were not adjusted
for in our multiple linear regression modeling such as the
presence of scrub technician trainees, anesthesia trainees,
surgical trainees, or traveling nursing staff who are not regularly
participating in orthopedic surgery cases at the hospital.
Therefore, understanding this cost of training surgical residents,
nursing, and scrub technician staff can help OR managers find
a balance between achieving scheduling and financial targets
while exploring strategies to provide adequate educational
opportunities.
Furthermore, it is pragmatic to identify other factors that could
affect OR efficiency (ie, type of anesthesia, performing secondary procedures during the joint replacement, or
performing bilateral procedures). In this study, we observed no
significant differences between the ACT or SCT for both
surgical centers when comparing general anesthesia versus
neuraxial anesthesia. The current literature offers mixed results
about the effect of anesthesia type on surgical time. A
meta-analysis comparing the use of neuraxial anesthesia versus
general anesthesia found no significant differences in surgical
time for a variety of cases [17]. Contrastingly, a different study
found that spinal anesthesia significantly reduced the duration of
TKA surgery and resulted in decreases in the rates of
thromboembolic events, infections, blood transfusion rates, and
hospital length of stay [18]. Another study also found significant
differences in ACT when regional anesthesia was used [19-21].
Furthermore, there is limited literature exploring the implication
of ASA classification on SCT or ACT. Previous studies propose
a positive correlation between ASA classification and
perioperative complication rates for patients undergoing fixation

Discussion

Overview

A paucity of literature exists for benchmarking operative times
in different surgical settings, and our study therefore aimed to
refine the prediction of surgical case duration for THA and TKA
between an academic center and a CH for the same orthopedic
surgeons. Our results showed that both SCT and ACT were
statistically significantly longer for primary hip and knee
arthroplasty at the AMC compared with the CH. The mean ACT
was higher at the AMC by less than 4 minutes for THA and
TKA for both surgeons, and this modest increase in ACT when
trainees are present is consistent with previous reports [12,13].
Therefore, although the participation of anesthesia trainees at
the AMC may elongate the ACT, these results are not clinically
meaningful in the context of OR efficiency—decreases in ACT
have not been shown to permit the scheduling of another OR
case in a workday but may be relevant for patient satisfaction
and experience [14]. In addition, it is crucial to recognize the
value of surgical training and its pivotal role in preparing the
next generation of health care providers. Finding a balance
between providing trainees with comprehensive experiences
while maintaining operational efficiency is crucial.

The mean SCT was greater at the academic center for THA and
TKA procedures compared with the CH. Our results may have
clinically significant implications, as a 16-minute difference in
4 cases can result in an extra hour of operating time per day,
allowing for the scheduling of another short case during a
normal surgical block or relieving staff in the OR earlier to
reduce overtime call coverage pay. Previous studies have shown
that operative time significantly increases when procedures are

Table 5. Multivariable linear regression coefficients for the association of ACT\(^a\) and SCT\(^b\) with anesthesia, hospital, and surgeon.

<table>
<thead>
<tr>
<th>Outcome and variable</th>
<th>Total hip arthroplasty(^c)</th>
<th>Total knee arthroplasty(^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimates (min)</td>
<td>95% CI</td>
</tr>
<tr>
<td>ACT</td>
<td>Coefficient intercept</td>
<td>22.15</td>
</tr>
<tr>
<td></td>
<td>Neuraxial anesthesia</td>
<td>1.38</td>
</tr>
<tr>
<td></td>
<td>AMC(^e)</td>
<td>4.08</td>
</tr>
<tr>
<td></td>
<td>Surgeon 1</td>
<td>–2.12</td>
</tr>
<tr>
<td>SCT</td>
<td>Coefficient intercept</td>
<td>105.56</td>
</tr>
<tr>
<td></td>
<td>Neuraxial anesthesia</td>
<td>–1.18</td>
</tr>
<tr>
<td></td>
<td>AMC</td>
<td>10.88</td>
</tr>
<tr>
<td></td>
<td>Surgeon 1</td>
<td>–3.17</td>
</tr>
</tbody>
</table>

\(^a\)ACT: anesthesia-controlled time.

\(^b\)SCT: surgery-controlled time.

\(^c\)ACT for total hip arthroplasty had 609 observations and an R^2/R^2 adjusted value of 0.036/0.031; and total knee arthroplasty had 625 observations and an R^2/R^2 adjusted value of 0.037/0.033.

\(^d\)SCT for total hip arthroplasty had 609 observations and an R^2/R^2 adjusted value of 0.033/0.028; and total knee arthroplasty had 625 observations and an R^2/R^2 adjusted value of 0.058/0.054.

\(^e\)AMC: academic medical center.
of hip fractures [22]. ASA classification is also a significant predictor of length of stay cost for patients undergoing TKA [23,24]. In our study, there was an increase in ACT and SCT by approximately 4 and 6 minutes respectively for both surgical centers when the patient had moderate to severe systemic disease (ASA class III or IV) compared with patients with mild or no systemic disease (ASA class I or II). With over 3700 primary joint arthroplasty cases performed across the AMC’s hospitals per year, a 10-minute decrease in ACT and SCT per case could result in 37,000 available OR minutes, equating to greater than 200 additional orthopedic cases (at an average of 155 minutes per case).

Limitations

Our study has several limitations. One of the limitations of this study is the sample size. Even with 1234 cases, there was still an underrepresentation of patients with ASA classifications of I and IV. While we feel this sample represents the patient population that normally receives primary joint replacement surgery, a larger cohort would allow for a more granular analysis of each ASA classification group. A second limitation is associated with the generalizability of this study. Our analysis was performed at 1 AMC and 1 CH. Only 2 surgeons were tracked for this study due to their unique movement between the 2 clinical sites. A larger cohort of surgeons with a similar multisite practice pattern could provide data that would be more generalizable. Furthermore, the perioperative environment and considerations at other academic and CHs could lead to different results. Therefore, the increased difference seen in SCT in our study could be a result of differences in OR culture between academic institutions and CHs, along with increased time required for on-the-job education for trainees in nursing and scrub technicians. Individual variation in the documentation of the surgery process could also be a confounding variable for the calculation of ACT and SCT. In addition, the decision-making process regarding the choice of surgical center involves a complex interplay of patient and surgical factors, some of which may not have been captured in our analysis. For example, the selection of cases for the academic center hospital may be influenced by factors such as case complexity, patient comorbidities, or surgeon preference. These potential biases could introduce uncontrolled variability into the ACT or SCT. Last, we define Ready for Positioning as the time point when anesthesia had completed its activities and when the patient was prepared for surgical positioning including completion of any additional intravenous lines or invasive monitoring if required for the procedure. However, other logistical factors may influence the actual commencement of surgery. Therefore, although our definition represents the point when anesthesia activities were complete, it does not imply the presence and readiness of the surgical team. Future directions of this study include assessing the effect of different levels of trainee and surgical nursing team involvement in our analysis, in addition to comparisons of cost and clinical outcomes between the 2 hospital locations and postoperative outcomes including complication rates.

Conclusions

OA is 1 of the 10 leading causes of disability in developed countries and the consequential growth in the volume of hip and knee replacement surgeries to manage end-stage OA will contribute to substantial and rising health expenditure [25,26]. Therefore, it is critical to optimize OR scheduling and management to maximize efficiency and decrease costs for both health systems and patients. As the demand for THA and TKA grows, it will be increasingly important to optimize OR efficiency for those surgeries. This study aims to validate and compare benchmarking times for ACT and SCT in a single patient population in both an academic center and a CH. One major application of these findings is that there is an efficiency benefit of performing primary joint replacements in our CH, as demonstrated by an average 16-minute reduction of SCT and a 4-minute reduction of ACT per case. This equates to a savings of approximately 80 minutes over the course of 4 surgical cases in a day, which could allow for the scheduling of another case. Such data can help to increase the reliability of surgical duration predictions and optimize scheduling to ultimately improve OR use, reduce cost, and improve patient experience.

Acknowledgments

The authors would like to acknowledge Dr Richard Ing, MD, Director of Clinical Research in the Department of Anesthesiology at the University of Colorado Anschutz Medical Campus, Aurora, CO, US, for his support and insights regarding this manuscript. This study was funded by the University of Colorado Department of Anesthesiology.

Data Availability

The data sets generated or analyzed during this study are available from the corresponding author on reasonable request.

Authors’ Contributions

TBN, KMW, NW, CH, RMK, VJT, CS, and AAF drafted the manuscript. TBN, KMW, NW, CH, RMK, VJT, CS, and AAF revised the manuscript. TBN, KMW, and AAF performed data analysis and interpretation. AAF was the principal investigator, performed the study design, and drafted the study protocol.

Conflicts of Interest

None declared.
References

Abbreviations

AA: anesthesiology assistant
ACT: anesthesia-controlled time
AMC: academic medical center
ASA: American Society of Anesthesiologists
CH: community hospital
CPT: current procedural terminology
OA: osteoarthritis
OR: operating room
SCT: surgery-controlled time
STROBE: Strengthening the Reporting of Observational Studies in Epidemiology
THA: total hip arthroplasty
TKA: total knee arthroplasty

©Thy B Nguyen, Nathaen Weitzel, Craig Hogan, Rachel M Kacmar, Kayla M Williamson, Jack Pattee, Vesna Jevtovic-Todorovic, Colby G Simmons, Adeel Ahmad Faruki. Originally published in JMIR Perioperative Medicine (http://periop.jmir.org), 26.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Perioperative Medicine, is properly cited. The complete bibliographic information, a link to the original publication on http://periop.jmir.org, as well as this copyright and license information must be included.