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Abstract

Background: Postoperative delirium (POD) is a common complication after major surgery and is associated with poor outcomes
in older adults. Early identification of patients at high risk of POD can enable targeted prevention efforts. However, existing POD
prediction models require inpatient data collected during the hospital stay, which delays predictions and limits scalability.

Objective: This study aimed to develop and externally validate a machine learning-based prediction model for POD using
routine electronic health record (EHR) data.

Methods: We identified all surgical encounters from 2014 to 2021 for patients aged 50 years and older who underwent an
operation requiring general anesthesia, with a length of stay of at least 1 day at 3 Indiana hospitals. Patients with preexisting
dementia or mild cognitive impairment were excluded. POD was identified using Confusion Assessment Method records and
delirium International Classification of Diseases (ICD) codes. Controls without delirium or nurse-documented confusion were
matched to cases by age, sex, race, and year of admission. We trained logistic regression, random forest, extreme gradient boosting
(XGB), and neural network models to predict POD using 143 features derived from routine EHR data available at the time of
hospital admission. Separate models were developed for each hospital using surveillance periods of 3 months, 6 months, and 1
year before admission. Model performance was evaluated using the area under the receiver operating characteristic curve (AUROC).
Each model was internally validated using holdout data and externally validated using data from the other 2 hospitals. Calibration
was assessed using calibration curves.

Results: The study cohort included 7167 delirium cases and 7167 matched controls. XGB outperformed all other classifiers.
AUROCs were highest for XGB models trained on 12 months of preadmission data. The best-performing XGB model achieved
a mean AUROC of 0.79 (SD 0.01) on the holdout set, which decreased to 0.69-0.74 (SD 0.02) when externally validated on data
from other hospitals.

Conclusions: Our routine EHR-based POD prediction models demonstrated good predictive ability using a limited set of
preadmission and surgical variables, though their generalizability was limited. The proposed models could be used as a scalable,
automated screening tool to identify patients at high risk of POD at the time of hospital admission.

(JMIR Perioper Med 2025;8:e59422) doi: 10.2196/59422
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Introduction

Postoperative delirium (POD) is a common and serious surgical
complication that affects 15%-50% of older surgical patients
[1-3]. POD is characterized by acute fluctuations in
consciousness and has a complex etiology thought to be caused
by interactions between predisposing (eg, individual
vulnerability) and precipitating (eg, acute illness or surgery)
factors [4]. Common predisposing factors include older age,
preexisting cognitive impairment, poor physical functioning,
alcohol abuse, smoking, and depression [5-8]. Risk factors
unique to surgical settings include the type of surgery (eg, major
vascular procedures), emergent status, case complexity, and
perioperative medications [6,7,9,10]. Despite being an acute
condition, delirium is associated with long-term cognitive and
physical impairment, institutionalization, and death [4,11].
However, up to 40% of cases may be preventable, and
multicomponent, nonpharmacologic interventions may be
effective in reducing incidence and health care costs [12,13].

Early and accurate POD risk prediction can inform prevention
and enable targeted intervention and resource planning efforts.
Fortunately, the widespread availability of electronic health
record (EHR) data and advancements in machine learning offer
an opportunity to develop accurate, low-cost, and scalable
screening tools for POD risk. Several machine learning-based
POD prediction models have been developed, reporting areas
under the curve (AUROCs) ranging from 0.71 to 0.86 [14-26].
However, the models with the highest AUROCs have important
limitations that hinder their practical application. First, they
focus on specific patient subsets (ie, intensive care unit (ICU)
patients, cardiac surgery), which restricts their generalizability
to general surgical populations. Second, population-specific
models necessitate separate models for each subpopulation,
making implementation cumbersome and resource intensive.
Finally, many of these models require inpatient data that take
hours or days to accumulate, delaying risk assessment and
potential interventions. A small number of studies have
developed POD prediction models for general surgical
populations; however, these models still incorporate nonroutine
clinical data (eg, inpatient nursing assessments) that require
time to collect and may not be universally available [14-18,27].

These limitations highlight the need for a model that can predict
POD in a diverse surgical population using readily available
preoperative data, as it could provide an early, inexpensive, and
scalable prescreening tool to identify patients who may benefit
from additional monitoring or preventative measures. In this
study, we developed and externally validated a machine learning
model that can accurately predict POD in surgical patients at
the time of hospital admission using only routine EHR data.
We also identified preoperative EHR-based predictors of POD
and determined how preoperative surveillance length affected
model performance.

Methods

Ethical Considerations
This study was approved by the Indiana University (IU)
Institutional Review Board (#15767) and adhered to the

reporting standards described in the Transparent Reporting of
Individual Prognosis or Diagnosis (TRIPOD) guidelines [27].

Study Data and Cohort Selection
Diagnoses, medication orders, surgery, and other inpatient
clinical records (eg, nursing assessments) were extracted from
the IU Health electronic data warehouse. IU Health, a nonprofit
health system with the largest physician network in the state of
Indiana, includes 17 hospitals and dozens of outpatient facilities
and performs approximately 115,000 surgeries per year [28].
We identified all surgical hospitalizations for patients aged 50
years and older who underwent surgery requiring general
anesthesia at an IU Health facility between January 1, 2014,
and December 31, 2021; had a length of stay of at least 1 day;
and did not have preexisting dementia. Hospitalizations of
patients with preexisting dementia (defined as having a dementia
diagnosis code or an order for an antidementia medication before
admission; see Table S1 in Multimedia Appendix 1) were
excluded because dementia is known to be the single-strongest
predictor of delirium [6]; models are not needed to forecast risk.
For a hospitalization to be eligible, the patient had to have at
least 1 IU Health encounter (defined as any interaction with an
IU Health facility, eg, outpatient, inpatient, or emergency
department visits) in the year before admission and have at least
1 diagnosis or medication record during that period. If no sex,
race, or age data were available across all of a given patient’s
hospitalizations, that patient was excluded.

This study followed a retrospective case-control design where
nondelirium (ie, control) hospitalizations were matched to
delirium (ie, case) hospitalizations by sex, race, age within 3
years, and admission year within 3 years. We matched on these
variables to ensure the age distribution for cases and controls
was equalized across race and sex groups. As a result, age was
less important to the model, and biases within strata of race and
sex were minimized. Because matching was done at the
hospitalization level rather than the patient-level, it was possible
for case and control hospitalizations belonging to the same
patient to be matched.

Hospitalizations where the patient developed POD were
designated as cases. POD was defined as at least 1 positive
Confusion Assessment Method (CAM) [29] nursing assessment
or a delirium International Classification of Diseases, Ninth
Revision (ICD-9)/International Classification of Diseases, Tenth
Revision, Clinical Modification (ICD-10-CM) code (see Table
S2 in Multimedia Appendix 1) recorded during the hospital
stay. The CAM is a validated diagnostic algorithm with an
overall sensitivity of 94% and a specificity of 89% [30].
Hospitalizations where delirium was present at the time of
admission were excluded because the model is intended to
predict POD. Hospitalizations without delirium or any
nurse-documented confusion (ie, cognitive assessments reporting
that the patient was disoriented, confused, or did not follow
commands) were eligible to be selected as controls. Visits that
did not have documented delirium (ie, delirium ICD code or
positive CAM) but did have nurse-documented confusion were
excluded from the control pool to ensure controls were not
actually misclassified cases; confusion (without delirium) could
possibly represent subsyndromal delirium. If a case had more
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than 1 potential control, a control was randomly selected. For
each eligible visit, the index date was defined as the date of
hospital admission. We used the following set of
sociodemographic, surgery, diagnosis, and medication variables
to build our predictive models.

Variables
Sociodemographic variables included age, patient-reported sex,
and patient-reported race (categorized as Black, White, Asian,
other, or unknown for analytic purposes), and insurance type.
The insurance type was ascertained during each index visit and
categorized as commercial, government (Medicare or Medicaid),
self-pay, or other/unknown. Smoking status at the time of
surgery was extracted from the EHR and categorized as
“current,” “former,” or “never smoker.” The BMI was obtained
from the visit nearest to the index. The initial American Society
of Anesthesiologists (ASA) class and emergency surgery status
(defined as operations with an ASA class of 5 or E) were also
included. Surgical specialty was assigned based on National
Surgical Quality Improvement Program inclusion and exclusion
criteria [31]. If a patient underwent 4 or more procedures falling
under 2 or more distinct specialties, the visit was categorized
as “multispecialty.”

Diagnosis variables were generated using ICD-9/ICD-10-CM
codes. Binary variables were created for each of the 31
Elixhauser disease groups using Quan et al [32] coding scheme
and Elixhauser mortality scores were calculated for each patient
using van Walravan weights [32-34]. We also created binary
variables for other diagnoses potentially associated with
increased risk of delirium, including previous delirium,
cerebrovascular disease (CVD), previous traumatic brain injury
(TBI), and sensory impairment (Table S3 in Multimedia
Appendix 1). We derived a composite variable representing the
total comorbidity burden by calculating the sum of the number
of unique ICD codes (at the 3-digit level) a patient had prior to
each index date. Variables for the number of ICD codes
belonging to the ICD-10 group Z00-Z99 (factors influencing
health status and contact with health services) and their ICD-9
equivalents were also included based on prior literature [14],
grouped as follows: Z00-Z13, Z16, Z17, Z18, Z20-29, Z30-39,
Z40-53, Z55-65, Z69-76, and Z77-99.

Medication variables were generated using medication order
data. Anticholinergic (ACh) medications were identified using
the Anticholinergic Cognitive Burden (ACB) scale, a
well-established tool that categorizes medications based on the
strength of their ACh activity [35]. Three ACh medication
variables were developed representing the total number of orders
for drugs with an ACB score of 1, 2, and 3, respectively. We
also included other non-ACh medication variables as predictors.
Since medication orders were retrieved from multiple health
care institutions, a unified mapping of medication names to a
drug taxonomy was not available. Instead, we mapped each
medication in the medication orders to the Anatomical
Therapeutic Chemical (ATC) classification codes [36]. The
ATC drug classification system is hierarchical with multiple
sublevels and maintained by the World Health Organization.
For this study, all 14 main groups (eg, A: alimentary tract and
metabolism; B: blood and blood-forming organs; C:

cardiovascular system) and the first-level subgroup were
included (eg, A01: stomatological preparations; A02: drugs for
acid-related disorders). For each patient, the count of medication
orders (excluding AChs, which were derived separately, as
described before) associated with a given ATC subgroup was
calculated over the preindex assessment period. We also created
a variable summing the total number of medication orders before
each admission to capture polypharmacy.

Model Development and Evaluation
Three IU Health institutions were selected for this study.
Institutions A, B, and C had the first-, second-, and third-greatest
number of delirium cases, respectively. Institution-specific
models were developed using data derived from the following
preindex surveillance periods: 3 months before admission, 6
months before admission, and 1 year before admission. The
purpose of training these separate models was to provide an
understanding of how the training data and surveillance period
impact the models’ ability to predict POD and generalizability.
Prior to training, each model’s data were split into training
(80%) and holdout (20%) sets, while maintaining a 1:1 ratio of
cases and controls to avoid class imbalance. Imbalanced data
are problematic in classification tasks because the model will
focus on learning the characteristics of the majority class. As a
result, the model may achieve high accuracy but fail to
accurately identify the minority class.

In this study, 6 demographic variables, 4 surgical variables, 49
diagnosis variables, and 84 medication variables were included
for a total of 143 features. Categorical variables were one-hot
encoded (ie, converted into dummy variables), and continuous
variables were standardized such that they each had a mean of
0 and an SD of 1. We initially explored several different
machine learning models to predict whether patients would
develop POD after surgery. In addition to traditional logistic
regression, a parametric model, we also tried random forest,
extreme gradient boosting (XGB), and a multilayer neural
network because they can learn complex nonlinear relationships
between variables. Optimal hyperparameters for each model
were selected using a grid search with 5-fold cross-validation.
Each candidate model was evaluated by calculating the area
under the receiver operating characteristic curve (AUROC) on
its holdout set using data from 1 year before hospital admission,
and the model with the highest AUROC was selected as the
final model. XGB outperformed the other candidate classifiers
in all cases.

After model selection, XGB models trained on data from
institution A (referred to as XGBA) were internally validated
on holdout data from institution A and externally validated using
holdout data from institutions B and C. Similarly, models trained
on data from institutions B and C (referred to as XGBB and
XGBC, respectively) were internally validated on holdout data
from institutions B and C and externally validated using data
from institutions A and C and A and B, respectively. The
predictive performance of each model was evaluated on the
holdout and external validation data by creating 1000
bootstrapped samples without replacement, calculating the
AUROC, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV) in each sample and then
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averaging them across all samples. We also generated
predictions for nondelirium visits with nurse-documented
confusion (which were excluded from training) to examine how
the models handle patients with possible subsyndromal delirium.
The default threshold of 0.50 was used for predictions. Shapley
Additive Explanation (SHAP) [37] was used to determine the
most important features, and model calibration was assessed
using calibration curves. All analyses were completed using R
version 4.3.2 (R Foundation for Statistical Computing).

Results

Study Cohort
Figure 1 depicts the workflow used for model development,
internal validation, and external validation for the model trained

on data from institution A. Between 2014 and 2022, at the 3
institutions of interest, there were 39,968 surgical visits for
30,131 unique patients aged 50 years and older. Of the identified
visits, 431 (1.4%) were excluded for not having any previous
diagnosis or medication order data, and 120 (0.4%) were
excluded for missing sex, race, or the ASA class. The 6250
(20.7%) visits with nurse-documented confusion (but no
delirium) were excluded from the training and holdout sets but
reserved for later analyses. After matching, the final analytic
sample included 7167 (23.8%) delirium cases and 7167 (23.8%)
matched controls (Figure 2).

Figure 1. Workflow for the development and validation of the model using data from institution A. XGB: extreme gradient boosting.
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Figure 2. Patient inclusion flow diagram.

Pooling across institutions, the median age was 68 (IQR 61-76)
years, and most patients were male (n=7412, 51.7%), White
(n=12,276, 85.6%), and had public insurance (n=11,523, 80.4%).
The most common surgical specialty was general surgery
(n=3600, 25.1%), and 11.5% (n=1644) of operations were
classified as emergencies (Table 1 and Table S4 in Multimedia
Appendix 1).

As shown in Table 2, the 3 most common comorbidities in the
general cohort were hypertension (n=9998, 69.8%), diabetes
(n=5189, 36.2%), and nonmetastatic cancer (n=5222, 29.6%).
Delirium cases differed from controls in several respects.

Delirium cases had a greater comorbidity burden than controls
and were more likely to have previous delirium (Table 2 and
Table S5 in Multimedia Appendix 1).

Of the 6250 (20.7%) visits with nurse-documented confusion
but without delirium, 3185 (51%) belonged to institution A,
1328 (21.2%) to institution B, and 1737 (27.8%) to institution
C. Patients with confusion were more likely to have had delirium
in the past year than controls but less likely than cases. Their
comorbidity burden also fell in between that of cases and
controls (Tables S6 and S7 in Multimedia Appendix 1).
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Table 1. Characteristics of delirium cases and controls by institution.

Institution CInstitution BInstitution AVariablesa

Cases (n=1500)Controls (n=1500)Cases (n=1928)Controls (n=1928)Cases (n=3739)Controls (n=3739)

72 (63-80)72 (63-80)66 (59-73)66 (59-73)68 (61-76)68 (61-76)Age (years), median (IQR)

760 (50.7)760 (50.7)861 (44.7)861 (44.7)1840 (49.2)1840 (49.2)Sex: female, n (%)

Race, n (%)

1 (0.1)1 (0.1)13 (0.7)13 (0.7)12 (0.3)12 (0.3)Asian

59 (3.9)59 (3.9)162 (8.4)162 (8.4)758 (20.3)758 (20.3)Black

4 (0.3)4 (0.3)3 (0.2)3 (0.2)4 (0.1)4 (0.1)Other

1432 (95.5)1432 (95.5)1747 (90.6)1747 (90.6)2959 (79.1)2959 (79.1)White

4 (0.3)4 (0.3)3 (0.2)3 (0.2)6 (0.2)6 (0.2)Unknown

Insurance, n (%)

124 (8.3)239 (15.9)391 (20.3)547 (28.4)572 (15.3)857 (22.9)Private

1366 (91.1)1253 (83.5)1530 (79.4)1376 (71.4)3137 (83.9)2861 (76.5)Public

10 (0.7)8 (0.5)7 (0.4)5 (0.3)30 (0.8)21 (0.6)Uninsured

27.2 (22.9-33.2)28.0 (23.9-33.6)27.0 (22.7-32.0)27.2 (23.2-32.0)27.5 (23.1-32.7)28.5 (24.3-33.7)BMI, median (IQR)

Smoking status, n (%)

280 (18.7)213 (14.2)263 (13.6)173 (9.0)561 (15.0)505 (13.5)Current

689 (45.9)624 (41.6)901 (46.7)799 (41.4)1805 (48.3)1609 (43.0)Former

531 (35.4)663 (44.2)764 (39.6)956 (49.6)1373 (36.7)1625 (43.5)Never

ASAb class, n (%)

81 (5.4)250 (16.7)37 (1.9)126 (6.5)143 (3.8)421 (11.3)1-2

1152 (76.8)1132 (75.5)1649 (85.5)1722 (89.3)2875 (76.9)3102 (83.0)3-4

267 (17.8)118 (7.9)242 (12.6)80 (4.1)721 (19.3)216 (5.8)5 or E

Surgical specialty, n (%)

142 (9.5)72 (4.8)160 (8.3)183 (9.5)577 (15.4)536 (14.3)Cardiothoracic (CT)

77 (5.1)17 (1.1)98 (5.1)76 (3.9)80 (2.1)48 (1.3)Ears, nose, and throat
(ENT)

370 (24.7)309 (20.6)981 (50.9)952 (49.4)490 (13.1)498 (13.3)General

74 (4.9)15 (1.0)322 (16.7)78 (4.0)614 (16.4)97 (2.6)Multiple

128 (8.5)169 (11.3)10 (0.5)3 (0.2)672 (18.0)666 (17.8)Neurology

370 (24.7)560 (37.3)68 (3.5)103 (5.3)620 (16.6)907 (24.3)Orthopedics

22 (1.5)11 (0.7)61 (3.2)57 (3.0)28 (0.7)28 (0.7)Other

95 (6.3)77 (5.1)17 (0.9)31 (1.6)111 (3.0)165 (4.4)Plastic surgery

131 (8.7)153 (10.2)209 (10.8)440 (22.8)172 (4.6)276 (7.4)Urology/gynecology

91 (6.1)117 (7.8)2 (0.1)5 (0.3)375 (10.0)518 (13.9)Vascular

aContinuous variables are summarized as the median (IQR) and categorical variables as n (%).
bASA: American Society of Anesthesiologists.
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Table 2. Clinical characteristics of cases and controls by institution.

Institution CInstitution BInstitution AVariablea

Cases (n=1500)Controls (n=1500)Cases (n=1928)Controls (n=1928)Cases (n=3739)Controls (n=3739)

9 (2-18)5 (0-12)13 (5-22)9 (4-17)8 (2-18)5 (0-13)ECIb score, median
(IQR)

22 (11-38)17 (80-29)26 (13-41)21 (11-34)24 (12-40)21 (12-33)Number of ICDc codes,
median (IQR)

445 (29.7)267 (17.8)304 (15.8)203 (10.5)1040 (27.8)713 (19.1)Congestive heart failure
(CHF), n (%)

471 (31.4)393 (26.2)485 (25.2)397 (20.6)1203 (32.2)969 (25.9)Arrhythmia, n (%)

178 (11.9)115 (7.7)188 (9.8)148 (7.7)724 (19.4)639 (17.1)Valvular disease, n (%)

378 (25.2)316 (21.1)259 (13.4)217 (11.3)1138 (30.4)977 (26.1)Peripheral vascular dis-
order (PVD), n (%)

1066 (71.1)997 (66.5)1255 (65.1)1217 (63.1)2696 (72.1)2767 (74.0)Hypertension, n (%)

542 (36.1)398 (26.5)506 (26.2)444 (23.0)1227 (32.8)962 (25.7)Chronic obstructive
pulmonary disorder
(COPD), n (%)

636 (42.4)481 (32.1)717 (37.2)558 (28.9)1502 (40.2)1295 (34.6)Diabetes, n (%)

310 (20.7)249 (16.6)339 (17.6)347 (18.0)630 (16.8)659 (17.6)Hypothyroidism, n (%)

474 (31.6)336 (22.4)639 (33.1)506 (26.2)1198 (32.0)891 (23.8)Renal failure, n (%)

129 (8.6)73 (4.9)573 (29.7)415 (21.5)336 (9.0)266 (7.1)Liver disease, n (%)

26 (1.7)33 (2.2)71 (3.7)75 (3.9)85 (2.3)69 (1.8)Lymphoma, n (%)

400 (26.7)339 (22.6)1184 (61.4)1273 (66.0)1040 (27.8)986 (26.4)Cancer, n (%)

153 (10.2)100 (6.7)336 (17.4)164 (8.5)393 (10.5)264 (7.1)Coagulopathy, n (%)

374 (24.9)333 (22.2)372 (19.3)303 (15.7)758 (20.3)720 (19.3)Obesity, n (%)

173 (11.5)76 (5.1)349 (18.1)220 (11.4)371 (9.9)240 (6.4)Weight loss, n (%)

543 (36.2)334 (22.3)716 (37.1)440 (22.8)1171 (31.3)761 (20.4)Fluid/electrolyte disor-
ders, n (%)

296 (19.7)211 (14.1)335 (17.4)244 (12.7)659 (17.6)460 (12.3)Deficiency anemia, n
(%)

74 (4.9)30 (2.0)129 (6.7)67 (3.5)219 (5.9)135 (3.6)Alcohol abuse, n (%)

72 (4.8)42 (2.8)80 (4.1)58 (3.0)213 (5.7)171 (4.6)Drug abuse, n (%)

38 (2.5)12 (0.8)34 (1.8)13 (0.7)84 (2.2)20 (0.5)Psychoses, n (%)

406 (27.1)275 (18.3)514 (26.7)343 (17.8)1022 (27.3)905 (24.2)Depression, n (%)

231 (15.4)142 (9.5)141 (7.3)111 (5.8)668 (17.9)527 (14.1)CVDd, n (%)

23 (1.5)17 (1.1)19 (1.0)12 (0.6)74 (2.0)35 (0.9)Previous TBIe, n (%)

118 (7.9)75 (5.0)91 (4.7)81 (4.2)203 (5.4)212 (5.7)Sensory impairment, n
(%)

278 (18.5)85 (5.7)304 (15.8)103 (5.3)615 (16.4)215 (5.8)Previous delirium, n
(%)

aContinuous variables are summarized as the median (IQR) and categorical variables as n (%).
bECI: Elixhauser comorbidity index.
cICD: International Classification of Diseases.
dCVD: cerebrovascular disease.
eTBI: traumatic brain injury.
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Model Evaluation
XGB had the highest AUROC out of the 4 candidate classifiers
(AUROC=0.79), followed by the neural network
(AUROC=0.78), the random forest (AUROC=0.78), and logistic
regression (AUROC=0.72). Based on this AUROC evaluation,
the XGB model was retained for further analysis. For institution
A, the training set included 5234 visits (n=2617, 50%, cases
and n=2617, 50%, controls) and the holdout set included 1503
visits (n=752, 50%, cases and n=751, 50%, controls). For
institution B, the training and holdout data sets included 2699
visits (n=1350, 50%, cases and n=1349, 50%, controls) and 775
visits (n=387, 49.9%, cases and n=388, 50.1%, controls),
respectively. The training and holdout data sets for institution
C included 2100 visits (n=1050, 50%, cases and n=1050, 50%,

controls) and 603 visits (n=302, 50.1%, cases and n=301, 49.9%,
controls), respectively.

The models trained on institution A (ie, XGBA) had the best
performance, achieving AUROCs of 0.77-0.79 on institution
A holdout data and 0.68-0.74 when externally validated on data
from institutions B and C. Models trained on institution B (ie,
XGBB) were the least robust, achieving a maximum AUROC
of 0.71 on holdout data from institution B and 0.72-0.74 when
externally validated on data from institutions A and C. Models
trained on institution C (ie, XGBC) performed better than XGBB

but worse than XGBA, with a maximum AUROC of 0.77 on
holdout data from institution C and 0.64-0.75 when externally
validated on data from institutions A and B (Table 3).
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Table 3. XGBa model performance metricsb by surveillance period and holdout data.

NPVe, mean (SD)PPVd, mean (SD)Specificity, mean (SD)Sensitivity, mean (SD)AUROCc, mean (SD)Surveillance period, models,
and institutions

1 year, XGBA

0.71 (0.02)0.72 (0.02)0.72 (0.02)0.70 (0.02)0.79 (0.01)Institution A

0.61 (0.02)0.69 (0.03)0.78 (0.02)0.49 (0.03)0.69 (0.02)Institution B

0.69 (0.03)0.67 (0.03)0.66 (0.03)0.70 (0.03)0.74 (0.02)Institution C

1 year, XGBB

0.70 (0.02)0.64 (0.02)0.57 (0.02)0.76 (0.02)0.74 (0.01)Institution A

0.64 (0.02)0.69 (0.03)0.75 (0.02)0.57 (0.03)0.71 (0.02)Institution B

0.66 (0.03)0.67 (0.03)0.68 (0.03)0.65 (0.03)0.73 (0.02)Institution C

1 year, XGCC

0.71 (0.02)0.66 (0.02)0.60 (0.02)0.75 (0.02)0.75 (0.01)Institution A

0.59 (0.02)0.67 (0.03)0.77 (0.02)0.47 (0.03)0.69 (0.02)Institution B

0.67 (0.03)0.69 (0.03)0.69 (0.03)0.66 (0.03)0.77 (0.02)Institution C

6 months, XGBA

0.62 (0.02)0.67 (0.03)0.73 (0.02)0.56 (0.03)0.78 (0.01)Institution A

0.59 (0.02)0.68 (0.03)0.79 (0.02)0.45 (0.03)0.68 (0.02)Institution B

0.67 (0.03)0.67 (0.03)0.66 (0.03)0.67 (0.03)0.74 (0.02)Institution C

6 months, XGBB

0.71 (0.02)0.63 (0.02)0.54 (0.02)0.78 (0.02)0.73 (0.01)Institution A

0.62 (0.02)0.67 (0.03)0.73 (0.02)0.56 (0.03)0.71 (0.02)Institution B

0.67 (0.03)0.68 (0.03)0.68 (0.03)0.66 (0.03)0.74 (0.02)Institution C

6 months, XGCC

0.70 (0.02)0.63 (0.02)0.55 (0.02)0.76 (0.02)0.73 (0.01)Institution A

0.60 (0.02)0.64 (0.03)0.70 (0.02)0.52 (0.03)0.65 (0.02)Institution B

0.69 (0.03)0.68 (0.03)0.66 (0.03)0.71 (0.03)0.76 (0.02)Institution C

3 months, XGBA

0.70 (0.02)0.70 (0.02)0.70 (0.02)0.70 (0.02)0.77 (0.01)Institution A

0.60 (0.02)0.68 (0.03)0.78 (0.02)0.47 (0.03)0.69 (0.02)Institution B

0.68 (0.03)0.67 (0.03)0.67 (0.03)0.68 (0.03)0.74 (0.02)Institution C

3 months, XGBB

0.69 (0.02)0.63 (0.02)0.55 (0.02)0.75 (0.02)0.72 (0.01)Institution A

0.63 (0.02)0.68 (0.03)0.74 (0.02)0.56 (0.03)0.70 (0.02)Institution B

0.66(0.03)0.67 (0.03)0.68 (0.03)0.65 (0.03)0.74 (0.02)Institution C

3 months, XGCC

0.70 (0.02)0.64 (0.02)0.57 (0.02)0.75 (0.02)0.73 (0.01)Institution A

0.58 (0.02)0.63 (0.03)0.71 (0.02)0.50 (0.03)0.64 (0.02)Institution B

0.70 (0.03)0.67 (0.03)0.64 (0.03)0.73 (0.03)0.76 (0.02)Institution C

aXGB: extreme gradient boosting.
bMean (SD) metrics presented were obtained using bootstrap resampling on the held-out patients from institutions A, B, and C.
cAUROC: area under the receiver operating curve.
dPPV: positive predictive value.
eNPV: negative predictive value.
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Performance became marginally worse with shorter surveillance
periods. All models were relatively well calibrated (Figures
S1-S3 in Multimedia Appendix 1). The top 5 most important
features for XGBA, XGBB, and XGBC by evaluation data set
and surveillance period are presented in Table 4 and Tables

S8-S9 in Multimedia Appendix 1. The ASA class was frequently
the most important predictor.

Across all surveillance periods, the models predicted between
40% and 60% of the patients with confusion as cases or controls
(Table S10 in Multimedia Appendix 1).

Table 4. Top 5 most influential variables used by XGBa models (1-year surveillance period).b

Holdout dataModel and rank

Institution CInstitution BInstitution A

XGBA

ASA classASA classASAc class1

ICD group: Z00-Z13ICD group: Z00-Z13ICDd group: Z00-Z13e2

Service: hospitalistfMultispecialty surgeryMultispecialty surgery3

Multispecialty surgeryService: hospitalistService: hospitalist4

Emergency surgeryPrevious deliriumEmergency surgery5

XGBB

ASA classASA classASA class1

Multispecialty surgeryMultispecialty surgeryMultispecialty surgery2

Previous deliriumPrevious deliriumPrevious delirium3

Service: orthopedicsgUrology/gynecology surgeryBMI4

BMIBMIEmergency surgery5

XGBC

ASA classASA classASA class1

Service: orthopedicsService: hospitalistService: hospitalist2

Service: hospitalistService: orthopedicsService: orthopedics3

Previous deliriumPrevious deliriumPrevious delirium4

ICD group: Z77-Z99hMultispecialty surgeryMultispecialty surgery5

aXGB: extreme gradient boosting.
bFeature importance measured using Shapley Additive Explanation (SHAP) values. XGBA, XGBB, and XGBC were trained on data from institutions
A, B, and C, respectively.
cASA: American Society of Anesthesiologists.
dICD: International Classification of Diseases.
eICD group Z00-Z13: persons encountering health services for examinations.
fAdmitted to hospitalist service.
gAdmitted to orthopedics service.
hICD group Z77-Z99: persons with potential health hazards related to family and personal history and certain conditions influencing health status.

Discussion

Principal Findings
We developed and externally validated 3 models to predict POD
with routine EHR data available at the time of hospital
admission. In our experiments, XGB outperformed all other
classifiers and demonstrated good discriminative ability on
holdout data, achieving a maximum AUROC of 0.79.
Generalizability varied by model and the institution used for
external validation.

Our models demonstrated good predictive accuracy, with XGBA

outperforming XGBB and XGBC across all surveillance periods.
Interestingly, longer surveillance periods did not appear to
significantly benefit model performance. This is likely because
the most important features were surgery-related variables,
which were fixed across all surveillance durations. Additionally,
surveillance duration did not impact how the models classified
patients with confusion but no delirium (ie, potential
subsyndromal delirium); approximately half were predicted to
be cases, and the other half were predicted to be controls,
regardless of the surveillance period. Given that subsyndromal
delirium is thought to be on the spectrum between healthy
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controls and delirium [38], it was expected that the models
would have trouble classifying those patients.

Generalizability varied by model and institution. XGBA

performed relatively well when externally validated using data
from institution C, as did XGBC when validated using data from
institution A. However, the AUROCs for both models decreased
substantially when validated on data from institution B. In
contrast, XGBB had higher AUROCs when externally validated
on institutions A and C than it did on holdout data from the
same institution it was trained on. We hypothesize that the
observed variation in performance could be due to institution
B having a substantially different patient population than
institutions A and C. Institutions A and C are trauma centers
that perform a comparatively large number of orthopedic
surgeries, and their populations have fewer comorbidities.
Institution A also cares for complex vascular and cardiac
patients, while the other 2 institutions generally do not.
Conversely, institution B is not a trauma center and performs
mostly general and urologic/gynecologic surgeries. It also
largely services frail, high-acuity patients with chronic illnesses,
and the general surgical complexity is higher. The comparatively
low AUROC of XGBB could reflect the model having difficulty
discriminating between cases and controls, because it was
trained on patients who were more ill, regardless of delirium
status. These results highlight the importance of selecting an
appropriate training population when a generalizable prediction
model is desired; if a hospital has a patient population that
differs significantly from the training data set, a localized model
may be needed, even within the same hospital system.

The ASA class, a subjective measure of a patient’s physiologic
status [39], was frequently the most important feature. This
supports previous literature linking a higher ASA class to a
greater risk of POD [40]. The Elixhauser comorbidity index
(ECI) did not appear in the list of top features despite the strong
association of comorbidities with delirium, possibly because
the ASA class summarizes health information beyond mortality
risk and additionally identifies emergency cases. However, the
subjectivity of the ASA class [41] may harm model
generalizability compared to more objective measures, such as
comorbidity scores. Other surgical variables, including admitting
service and surgical specialty, were frequently among the top
5 features. Notably, both these variables have been associated
with an increased risk of POD, particularly surgical specialty
[6]. Multispecialty surgery was particularly important across
models, suggesting that surgical complexity may be an important
risk factor for delirium. The type of admitting service and
individual surgical specialties that were most predictive differed
by model, potentially because the distributions were different
between institutions. For example, urologic/gynecologic surgery
was frequently a top predictor in XGBB models but not in others.
This could be because proportionally more controls had that
type of surgery than cases at institution B but not at institutions
A and C. Reducing the cardinality of these variables is likely
to improve generalizability but potentially at the cost of reduced
discriminative ability. For XGBA, the number of ICD codes
belonging to ICD-10 group Z00-Z13 (“persons encountering
health services for examinations”) was a top feature, and higher

values negatively influenced model predictions. This may be
because this ICD group captures routine health examinations,
which are often undertaken by healthier individuals. The fact
that the top features are supported by the literature suggests that
the models are clinically explainable.

Several delirium prediction models have been developed,
reporting AUROCs ranging from 0.56 to 0.94 [42]. The models
with the highest AUROCs focus on specific patient subsets (ie,
ICU patients, cardiac surgery) and include variables collected
during the hospital stay, such as the APACHE score (which
must be calculated), surgery duration (often not reliably
recorded), and inpatient laboratory values. In-hospital variables
may, indeed, be the strongest predictors of delirium and explain
why our model failed to outperform previous ones; however,
they were intentionally excluded from this study as that would
preclude our models from being used at the time of
hospitalization. Fewer models have been developed that are
both her based and intended to be used at or shortly after
admission. In their 2022 paper, Bishara et al [14] developed a
POD prediction model for the general surgical population using
different machine learning approaches and preoperative EHR
data. They found that an XGB model outperforms other
classifiers, similar to our findings, and reported an internal
validation AUROC of 0.85 [14]. In contrast to our study,
matching was not performed, and patients with dementia were
included in the study population. Fifty-nine variables derived
from inpatient (but preoperative) nursing assessments were also
included as predictors. Some of these assessments (eg, Braden
Scale score [43]) captured patients’ functional status, which is
highly correlated to delirium [5,6] and may explain why their
model had a higher AUROC. Wong et al [44] developed a model
to predict delirium in a general inpatient population without
known cognitive impairment using an XGB model and reported
an AUROC of 0.86. Their model used 796 features collected
within 24 hours of admission and included inpatient neurologic
examination data, which were highly predictive of delirium.
These factors could explain, at least in part, the difference in
performance between these previous models and our models.

In summary, our findings suggest that a machine learning model
trained on routine EHR data can achieve clinically useful
accuracy when predicting POD. Unlike previous models, the
models presented in this study can be used to make predictions
at the time of hospital admission, which could quickly inform
preventive and resource-planning efforts. The models were also
externally validated, providing critical information about
generalizability when using a limited set of prehospital and
surgery variables. These models can be readily integrated into
EHR systems to provide a scalable, automated prescreening
tool to flag patients who are at risk of developing POD and
would benefit from targeted preventative measures.

Strengths and Limitations
Our study has several strengths. First, we used both the CAM
method and ICD codes to maximize case identification; because
delirium ICD codes are extremely specific but less sensitive
[45], false negatives are unlikely. Second, we compared different
surveillance periods to determine how surveillance duration
influences accuracy. Third, we examined how the models

JMIR Perioper Med 2025 | vol. 8 | e59422 | p. 11https://periop.jmir.org/2025/1/e59422
(page number not for citation purposes)

Holler et alJMIR PERIOPERATIVE MEDICINE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


classify patients with confusion but no delirium, which could
potentially capture subsyndromal delirium. Finally, we trained
our models on data from 3 different institutions and externally
validated them against each other to determine their
transportability.

This study also has several limitations. Although we attempted
to maximize delirium detection by using both the CAM method
and ICD codes, a small number of patients did not have any
CAM data available. As mentioned previously, delirium ICD
codes tend to have high specificity but lower sensitivity [45],
so some cases may have been missed. Patients were intentionally
matched on age, sex, and race to limit biases related to these
variables; however, discriminative ability was likely reduced
as a result. Because patients with preexisting dementia or
confusion during the inpatient visit (but no documented
delirium) were excluded, the models may not generalize well
to those types of patients. However, we chose to exclude those
patients because their high risk of delirium was evident; our
models focused on patients with a less clear delirium risk, which
could partially explain the lower performance compared to

previous models. Finally, although the models were externally
validated, the hospitals were within the same health care system,
which may present more optimistic generalizability relative to
uses of the models in outside systems.

Conclusion
Routine EHR data can be used for early delirium prediction in
a diverse cohort of surgery patients without dementia. Although
our models slightly underperformed relative to some of the
previously published classifiers that use inpatient data, our
routine EHR-based models serve a distinct purpose of enabling
predictions at the time of admission, while being highly scalable.
Generalizability varied depending on the training data, so
institution-specific models may be necessary when using only
a limited set of preadmission and surgery variables with
distributions that substantially differ between institutions. The
proposed models could be used in clinical practice as an
automated prescreening tool for the early identification of
high-risk patients, enabling clinicians to immediately adjust
their care strategies and inform targeted delirium prevention
measures and resource planning.
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ACh: anticholinergic
ASA: American Society of Anesthesiologists
ATC: Anatomical Therapeutic Chemical
AUROC: area under the receiver operating characteristic curve
CAM: Confusion Assessment Method
CVD: cerebrovascular disease
ECI: Elixhauser comorbidity index
EHR: electronic health record
ICD: International Classification of Diseases
ICD-9: International Classification of Diseases, Ninth Revision
ICD-10-CM: International Classification of Diseases, Tenth Revision, Clinical Modification
IU: Indiana University
NPV: negative predictive value
POD: postoperative delirium
PPV: positive predictive value
SHAP: Shapley Additive Explanation
TBI: traumatic brain injury
XGB: extreme gradient boosting
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